Zhu Xiaoning, Luria Isaac, Tighe Patrick, Zou Fei, Zou Baiming
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
J Surg (Lisle). 2024;9(15). doi: 10.29011/2575-9760.11189. Epub 2024 Nov 27.
Appropriate opioid management is crucial to reduce opioid overdose risk for ICU surgical patients, which can lead to severe complications. Accurately predicting postoperative opioid needs and understanding the associated factors can effectively guide appropriate opioid use, significantly enhancing patient safety and recovery outcomes. Although machine learning models can accurately predict postoperative opioid needs, lacking interpretability hinders their adoption in clinical practice.
We developed an interpretable deep learning framework to evaluate individual feature's impact on postoperative opioid use and identify important factors. A Permutation Feature Importance Test (PermFIT) was employed to assess the impact with a rigorous statistical inference for machine learning models including Support Vector Machines, eXtreme Gradient Boosting, Random Forest, and Deep Neural Networks (DNN). The Mean Squared Error (MSE) and Pearson Correlation Coefficient (PCC) were used to evaluate the performance of these models.
We conducted analysis utilizing the electronic health records of 4,912 surgical patients from the Medical Information Mart for Intensive Care database. In a 10-fold cross-validation, the DNN outperformed other machine learning models, achieving the lowest MSE (7889.2 mcg) and highest PCC (0.283). Among 25 features, 13-including age, surgery type, and others-were identified as significant predictors of postoperative opioid use (p < 0.05).
The DNN proved to be an effective model for predicting postoperative opioid consumption and identifying significant features through the PermFIT framework. This approach offers a valuable tool for precise opioid prescription tailored to the individual needs of ICU surgical patients, improving patient outcomes and enhancing safety.
适当的阿片类药物管理对于降低重症监护病房(ICU)手术患者阿片类药物过量风险至关重要,阿片类药物过量可能导致严重并发症。准确预测术后阿片类药物需求并了解相关因素可以有效指导合理使用阿片类药物,显著提高患者安全性和康复效果。尽管机器学习模型可以准确预测术后阿片类药物需求,但缺乏可解释性阻碍了它们在临床实践中的应用。
我们开发了一个可解释的深度学习框架,以评估个体特征对术后阿片类药物使用的影响并识别重要因素。采用排列特征重要性测试(PermFIT)对包括支持向量机、极端梯度提升、随机森林和深度神经网络(DNN)在内的机器学习模型进行严格的统计推断,以评估其影响。使用均方误差(MSE)和皮尔逊相关系数(PCC)来评估这些模型的性能。
我们利用重症监护医学信息数据库中4912例手术患者的电子健康记录进行了分析。在10折交叉验证中,DNN的表现优于其他机器学习模型,实现了最低的MSE(7889.2微克)和最高的PCC(0.283)。在25个特征中,13个特征——包括年龄、手术类型等——被确定为术后阿片类药物使用的显著预测因素(p < 0.05)。
通过PermFIT框架,DNN被证明是一种预测术后阿片类药物消耗和识别显著特征的有效模型。这种方法为根据ICU手术患者的个体需求进行精确阿片类药物处方提供了一个有价值的工具,改善了患者预后并提高了安全性。