Suppr超能文献

海胆精子鞭毛运动的数字化精确测量

Digitized precision measurements of the movements of sea urchin sperm flagella.

作者信息

Rikmenspoel R, Isles C A

出版信息

Biophys J. 1985 Mar;47(3):395-410. doi: 10.1016/S0006-3495(85)83931-X.

Abstract

High speed cinemicrographs were made of sea urchin sperm at temperatures varying from 22 to 6 degrees C. Apparatus, combining a television camera and a video digitizer, was constructed to scan individual flagellar images and to digitize the flagellar waveforms. With appropriate smoothing and averaging procedures, the rough data were condensed by a microcomputer into the coordinates of 20 points along a flagellum, spaced 2 microns apart. The curvature of the flagellum at these points was also computed. The coordinates of the flagellar positions were obtained to an accuracy of approximately +/- 0.1 micron, flagellar curvature to an accuracy of approximately +/- 50 cm-1. At all temperatures the amplitude of the flagella was found to vary with time in a purely sinusoidal fashion to within +/- 2%. The local curvature of the flagella had basically a purely sinusoidal time course to within +/- 50 cm-1, but a varying amount of asymmetry was present in the distal and the proximal ends of the flagella. This asymmetry in the curvature was related to the radius of the circular path of the sperm. The flagellar waveforms can probably be summarized in simple algebraic functions.

摘要

在22摄氏度至6摄氏度的不同温度下,对海胆精子进行了高速电影显微摄影。构建了一套将电视摄像机和视频数字化仪相结合的设备,用于扫描单个鞭毛图像并将鞭毛波形数字化。通过适当的平滑和平均程序,粗糙的数据被微型计算机浓缩为沿着鞭毛的20个点的坐标,这些点相隔2微米。还计算了这些点处鞭毛的曲率。鞭毛位置的坐标精确到约±0.1微米,鞭毛曲率精确到约±50厘米-1。在所有温度下,发现鞭毛的振幅随时间呈纯正弦方式变化,变化幅度在±2%以内。鞭毛的局部曲率在±50厘米-1以内基本呈纯正弦时间进程,但在鞭毛的远端和近端存在不同程度的不对称性。这种曲率的不对称性与精子圆周路径的半径有关。鞭毛波形可能可以用简单的代数函数来概括。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb07/1435215/7e453369b7b1/biophysj00194-0133-a.jpg

相似文献

1
Digitized precision measurements of the movements of sea urchin sperm flagella.
Biophys J. 1985 Mar;47(3):395-410. doi: 10.1016/S0006-3495(85)83931-X.
2
Algebraic expressions for the waveforms of sea urchin sperm flagella.
J Theor Biol. 1985 Sep 7;116(1):127-47. doi: 10.1016/s0022-5193(85)80134-x.
3
Automated methods for estimation of sperm flagellar bending parameters.
Cell Motil. 1984;4(6):417-30. doi: 10.1002/cm.970040603.
4
Movement of sea urchin sperm flagella.
J Cell Biol. 1978 Feb;76(2):310-22. doi: 10.1083/jcb.76.2.310.
5
The equation of motion for sperm flagella.
Biophys J. 1978 Aug;23(2):177-206. doi: 10.1016/S0006-3495(78)85442-3.
6
Transient flagellar waveforms during intermittent swimming in sea urchin sperm. I. Wave parameters.
J Muscle Res Cell Motil. 1980 Mar;1(1):31-59. doi: 10.1007/BF00711924.
8
Axonemal activity relative to the 2D/3D-waveform conversion of the flagellum.
Cell Motil Cytoskeleton. 2002 Feb;51(2):89-111. doi: 10.1002/cm.10016.
9
Effects of the dynein inhibitor ciliobrevin on the flagellar motility of sea urchin spermatozoa.
Cytoskeleton (Hoboken). 2015 Apr;72(4):182-92. doi: 10.1002/cm.21218. Epub 2015 May 25.
10
Mechanisms of flagellar motility deduced from backward-swimming bull sperm.
J Exp Zool. 1984 Jul;231(1):109-16. doi: 10.1002/jez.1402310114.

引用本文的文献

1
Modelling Motility: The Mathematics of Spermatozoa.
Front Cell Dev Biol. 2021 Jul 20;9:710825. doi: 10.3389/fcell.2021.710825. eCollection 2021.
2
Automatic optimal filament segmentation with sub-pixel accuracy using generalized linear models and B-spline level-sets.
Med Image Anal. 2016 Aug;32:157-72. doi: 10.1016/j.media.2016.03.007. Epub 2016 Apr 4.
3
Human airway ciliary dynamics.
Am J Physiol Lung Cell Mol Physiol. 2013 Feb 1;304(3):L170-83. doi: 10.1152/ajplung.00105.2012. Epub 2012 Nov 9.
4
Hydrodynamics of the double-wave structure of insect spermatozoa flagella.
J R Soc Interface. 2012 Aug 7;9(73):1908-24. doi: 10.1098/rsif.2011.0841. Epub 2012 Feb 1.

本文引用的文献

1
Elastic properties of the sea urchin sperm flagellum.
Biophys J. 1966 Jul;6(4):471-9. doi: 10.1016/S0006-3495(66)86670-5. Epub 2008 Dec 31.
2
Muscle structure and theories of contraction.
Prog Biophys Biophys Chem. 1957;7:255-318.
3
Movement of sea urchin sperm flagella.
J Cell Biol. 1978 Feb;76(2):310-22. doi: 10.1083/jcb.76.2.310.
4
Transient flagellar waveforms during intermittent swimming in sea urchin sperm. I. Wave parameters.
J Muscle Res Cell Motil. 1980 Mar;1(1):31-59. doi: 10.1007/BF00711924.
5
Lithium reversibly inhibits microtubule-based motility in sperm flagella.
Nature. 1984;309(5968):560-2. doi: 10.1038/309560a0.
6
Sliding velocity between outer doublet microtubules of sea-urchin sperm axonemes.
J Cell Sci. 1980 Aug;44:169-86. doi: 10.1242/jcs.44.1.169.
8
Ciliary contractile model applied to sperm flagellar motion.
J Theor Biol. 1982 Jun 21;96(4):617-45. doi: 10.1016/0022-5193(82)90234-x.
9
Effects of increased viscosity on the movements of some invertebrate spermatozoa.
J Exp Biol. 1966 Aug;45(1):113-39. doi: 10.1242/jeb.45.1.113.
10
Model for bend propagation in flagella.
J Theor Biol. 1971 Apr;31(1):1-24. doi: 10.1016/0022-5193(71)90117-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验