Suppr超能文献

LcProt:基于蛋白质组学的肺癌多事件血浆生物标志物鉴定,一项多中心研究。

LcProt: Proteomics-based identification of plasma biomarkers for lung cancer multievent, a multicentre study.

作者信息

Liang Hengrui, Wang Runchen, Cheng Ran, Ye Zhiming, Zhao Na, Zhao Xiaohong, Huang Ying, Jiang Zhanpeng, Li Wangzhong, Zheng Jianqi, Deng Hongsheng, Jiang Yu, Lin Yuechun, Yan Yun, Song Lei, Li Jie, Xu Xin, Liang Wenhua, Liu Jun, He Jianxing

机构信息

Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China.

Department of Proteomics, Tianjin Key Laboratory of Clinical Multi-Omics, Tianjin, China.

出版信息

Clin Transl Med. 2025 Jan;15(1):e70160. doi: 10.1002/ctm2.70160.

Abstract

BACKGROUND

Plasma protein has gained prominence in the non-invasive predicting of lung cancer. We utilised Zeolite Zotero NaY-based plasma proteomics to investigate its potential for multiple event predicting, including lung cancer diagnosis (task #1), lymph node metastasis detection (task #2) and tumour‒node‒metastasis (TNM) staging (task #3).

METHODS

A total of 4703 plasma proteins were quantified from 241 participants based on a prospective cohort of 2757 participants. An additional 46 participants from external prospective cohort of 735 participants were used for validation. Feature selection was performed using differential expressed protein analysis, area under curve (AUC) evaluation and least absolute shrinkage and selection operator (LASSO) regression. Random forest was used for multitask model construction based on the key proteins. Feature importance was interpreted using Shapley additive explanations (SHAP) algorithm.

RESULTS

For task #1, 10 proteins panel showed an AUC of .87 (.77‒.97) in the external validation. After integrating clinical factors, a significant increase diagnostic accuracy was observed with AUC of .91 (.85‒.98). For task #2, nine proteins panel achieved an AUC of .88 (.80‒.96), integration model showed an increase diagnostic accuracy with AUC of .90 (.85‒.97). For task #3, 10 proteins panel showed an AUC of .88 (.74‒.96) for stage I, .92 (.84‒.97) for stage II, .88 (.76‒.96) for stage III and .99 (.98‒.99) for stage IV in the integration model.

CONCLUSIONS

This study comprehensively profiled the NaY-based plasma proteome biomarker, laying the foundation for a high-performance blood test for predicting multiple events in lung cancer.

KEY POINTS

Our study developed an innovative nanomaterial, Zeolite NaY, which addressed the masking effect and improved the depth of the proteome. The performance of NaY-based plasma proteomics as a preclinical diagnostic tool was validated through both internal and external cohort. Furthermore, we explored the different patterns of plasma protein changes during the progression of lung cancer and used the explanations method to elucidate the roles of proteins in the multitask predictive model.

摘要

背景

血浆蛋白在肺癌的无创预测中日益受到关注。我们利用基于沸石Zotero NaY的血浆蛋白质组学来研究其在多种事件预测中的潜力,包括肺癌诊断(任务#1)、淋巴结转移检测(任务#2)和肿瘤-淋巴结-转移(TNM)分期(任务#3)。

方法

基于2757名参与者的前瞻性队列,对241名参与者的4703种血浆蛋白进行了定量分析。另外,从735名参与者的外部前瞻性队列中选取46名参与者进行验证。使用差异表达蛋白分析、曲线下面积(AUC)评估和最小绝对收缩和选择算子(LASSO)回归进行特征选择。基于关键蛋白,使用随机森林构建多任务模型。使用Shapley加法解释(SHAP)算法解释特征重要性。

结果

对于任务#1,10种蛋白质组成的检测板在外部验证中的AUC为0.87(0.77-0.97)。纳入临床因素后,诊断准确性显著提高,AUC为0.91(0.85-0.98)。对于任务#2,9种蛋白质组成的检测板的AUC为0.88(0.80-0.96),整合模型的诊断准确性有所提高,AUC为0.90(0.85-0.97)。对于任务#3,在整合模型中,10种蛋白质组成的检测板对I期的AUC为0.88(0.74-0.96),II期为0.92(0.84-0.97),III期为0.88(0.76-0.96),IV期为0.99(0.98-0.99)。

结论

本研究全面分析了基于NaY的血浆蛋白质组生物标志物,为预测肺癌多种事件的高性能血液检测奠定了基础。

关键点

我们的研究开发了一种创新的纳米材料——沸石NaY,它解决了掩盖效应并提高了蛋白质组的深度。基于NaY的血浆蛋白质组学作为一种临床前诊断工具的性能通过内部和外部队列得到了验证。此外,我们探索了肺癌进展过程中血浆蛋白变化的不同模式,并使用解释方法阐明了蛋白质在多任务预测模型中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c98a/11714244/fbdd38ee8b08/CTM2-15-e70160-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验