Lin Tzu-Chi, Yang Yi-Chun, Tuan Hsing-Yu
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Adv Sci (Weinh). 2025 Feb;12(8):e2413804. doi: 10.1002/advs.202413804. Epub 2025 Jan 9.
Potassium metal batteries are emerging as a promising high-energy density storage solution, valued for their cost-effectiveness and low electrochemical potential. However, understanding the role of potassiphilic sites in nucleation and growth remains challenging. This study introduces a single-atom iron, coordinated by nitrogen atoms in a 3D hierarchical porous carbon fiber (Fe─N-PCF), which enhances ion and electron transport, improves nucleation and diffusion kinetics, and reduces energy barriers for potassium deposition. Molten potassium infusion experiments confirm the Fe─N-PCF's strong potassiphilic properties, accelerating adsorption kinetics and improving potassium deposition performance. According to the Scharifker-Hills model, traditional carbon fiber substrates without potassiphilic sites cause 3D instantaneous nucleation, leading to dendritic growth. In contrast, the integration of single-atom and hierarchical porosity promotes uniform 3D progressive nucleation, leading to dense metal deposition, as confirmed by dimensionless i/i versus t/t plots and real-time in situ optical microscopy. Consequently, in situ X-ray diffraction demonstrated stable potassium cycling for over 1900 h, while the Fe─N-PCF@K||PTCDA full cell retained 69.7% of its capacity after 2000 cycles (72 mAh g), with a low voltage hysteresis of 0.876 V, confirming its strong potential for high energy density and extended cycle life, paving the way for future advancements in energy storage technology.
钾金属电池正在成为一种很有前景的高能量密度存储解决方案,因其成本效益高和电化学势低而受到重视。然而,了解亲钾位点在成核和生长中的作用仍然具有挑战性。本研究引入了一种由三维分级多孔碳纤维中的氮原子配位的单原子铁(Fe─N-PCF),它增强了离子和电子传输,改善了成核和扩散动力学,并降低了钾沉积的能量势垒。熔融钾注入实验证实了Fe─N-PCF具有很强的亲钾特性,加速了吸附动力学并改善了钾沉积性能。根据Scharifker-Hills模型,没有亲钾位点的传统碳纤维基底会导致三维瞬时成核,从而导致枝晶生长。相比之下,单原子与分级孔隙率的结合促进了均匀的三维渐进成核,导致致密的金属沉积,这由无量纲i/i对t/t图和实时原位光学显微镜证实。因此,原位X射线衍射表明钾循环稳定超过1900小时,而Fe─N-PCF@K||PTCDA全电池在2000次循环(72 mAh g)后保留了69.7%的容量,具有0.876 V的低电压滞后,证实了其在高能量密度和长循环寿命方面的强大潜力,为储能技术的未来发展铺平了道路。