Suppr超能文献

黏膜下早期胃癌患者术前淋巴结转移预测列线图

Nomogram for pre-procedural prediction of lymph node metastasis in patients with submucosal early gastric cancer.

作者信息

Yu Wenhao, Xu Zijie, Li Ben, Zi Mengli, Ren Jun, Wang Wei, Sun Qiannan, Zhang Qi, Wang Daorong

机构信息

Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.

Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.

出版信息

Surg Endosc. 2025 Mar;39(3):1661-1671. doi: 10.1007/s00464-024-11517-z. Epub 2025 Jan 9.

Abstract

BACKGROUND

The treatment of early gastric cancer (EGC) is contingent upon the status of lymph node metastasis (LNM). Accurate preoperative prediction of LNM is critical for reducing unnecessary surgeries. This study seeks to evaluate the risk factors for LNM in submucosal EGC and develop a predictive model to optimize therapeutic decision-making.

METHODS

A retrospective analysis was performed on clinical data from 389 patients with T1b-stage EGC who underwent radical gastrectomy. Univariate and multivariate analyses were conducted to identify independent risk factors, followed by the development of a nomogram to predict LNM. The model's efficacy was validated through receiver operating characteristic curves, calibration curves, and decision curve analysis.

RESULTS

Of the 389 patients, 77 had LNM. Logistic regression analysis identified gender, CA199 levels, tumor location, degree of differentiation, presence of ulcers, and lymph node enlargement on CT as independent risk factors for LNM. A nomogram was constructed to assess the risk of LNM, demonstrating strong predictive accuracy with an area under the curve of 0.82 in the training set and 0.74 in the validation set, along with good sensitivity and positive predictive value.

CONCLUSIONS

This study presents a reliable preoperative nomogram to estimate the likelihood of LNM in submucosal EGC, providing valuable guidance for determining the most effective treatment strategies for patients.

摘要

背景

早期胃癌(EGC)的治疗取决于淋巴结转移(LNM)情况。术前准确预测LNM对于减少不必要的手术至关重要。本研究旨在评估黏膜下EGC中LNM的危险因素,并建立一个预测模型以优化治疗决策。

方法

对389例行根治性胃切除术的T1b期EGC患者的临床资料进行回顾性分析。进行单因素和多因素分析以确定独立危险因素,随后建立预测LNM的列线图。通过受试者工作特征曲线、校准曲线和决策曲线分析验证该模型的有效性。

结果

389例患者中,77例发生LNM。逻辑回归分析确定性别、CA199水平、肿瘤位置、分化程度、溃疡存在情况以及CT上的淋巴结肿大为LNM的独立危险因素。构建了一个评估LNM风险的列线图,在训练集中曲线下面积为0.82,在验证集中为0.74,显示出较强的预测准确性,同时具有良好的敏感性和阳性预测值。

结论

本研究提出了一种可靠的术前列线图,用于估计黏膜下EGC中LNM的可能性,为确定患者最有效的治疗策略提供了有价值的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验