Suppr超能文献

使用自然样条模型探索经实证推导的经前症状领域的轨迹。

Using natural spline models to explore the trajectories of empirically derived domains of premenstrual symptoms.

作者信息

Baez Lara Michelle, Heller Aaron Shain

机构信息

Northwestern University, Feinberg School of Medicine, Department of Preventive Medicine, Center for Behavioral Intervention Technologies.

University of Miami, Department of Psychology.

出版信息

Psychol Assess. 2025 Jan-Feb;37(1-2):33-45. doi: 10.1037/pas0001356.

Abstract

Premenstrual symptoms are distressing and impairing for individuals and costly to society. These symptoms are heterogeneous within and across people, dimensional, and dynamic. While some efforts have been made to understand the trajectories of premenstrual symptoms, two major gaps in the literature remain. First, we lack understanding of the covariation among symptoms over the course of the menstrual cycle. Second, we know little about the trajectories of these symptoms and why symptoms might take different courses. To address these gaps, a sample of female undergraduates (N = 85) who reported no use of hormonal birth control and regularly occurring menstrual periods were recruited for a 4-month-long electronic daily diary study of premenstrual symptoms. We explored the covariation of symptoms over the cycle by conducting a multilevel exploratory factor analysis of the daily diary items. We identified six distinct but correlated symptom domains at the within-person level which were affective, cognitive, interpersonal, pain, and somatic. Next, we characterized the trajectories of each symptom domain using multilevel natural spline models and their first/second derivatives. Somatic symptoms increased/decreased more sharply and quickly than other symptom domains, pointing to a unique trajectory. Interpersonal and affective symptoms, on the other hand, were milder throughout. We demonstrated the importance of investigating the differences among symptom domain trajectories and underscored the need for future research to elucidate the unique mechanisms that underlie each trajectory. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

经前症状给个人带来痛苦并造成损害,对社会而言成本高昂。这些症状在个体内部和个体之间具有异质性、呈维度性且动态变化。虽然已经做出了一些努力来了解经前症状的发展轨迹,但文献中仍存在两个主要空白。首先,我们缺乏对月经周期中症状间协变关系的理解。其次,我们对这些症状的发展轨迹以及症状为何可能呈现不同进程了解甚少。为了填补这些空白,我们招募了85名未使用激素避孕且月经周期规律的女大学生作为样本,进行了一项为期4个月的关于经前症状的电子日记研究。我们通过对日记条目进行多层次探索性因素分析,探究了整个周期内症状的协变关系。我们在个体层面识别出六个不同但相关的症状领域,即情感、认知、人际、疼痛和躯体症状。接下来,我们使用多层次自然样条模型及其一阶/二阶导数来描述每个症状领域的发展轨迹。躯体症状比其他症状领域增加/减少得更急剧、更迅速,显示出独特的轨迹。另一方面,人际和情感症状在整个过程中较为轻微。我们证明了研究症状领域轨迹差异的重要性,并强调了未来研究阐明每个轨迹背后独特机制的必要性。(PsycInfo数据库记录 (c) 2025美国心理学会,保留所有权利)

相似文献

10
Selective serotonin reuptake inhibitors for premenstrual syndrome.用于经前综合征的选择性5-羟色胺再摄取抑制剂
Cochrane Database Syst Rev. 2013 Jun 7;2013(6):CD001396. doi: 10.1002/14651858.CD001396.pub3.

本文引用的文献

2
Affective Risk Associated With Menstrual Cycle Symptom Change.与月经周期症状变化相关的情感风险。
Front Glob Womens Health. 2022 Jul 22;3:896924. doi: 10.3389/fgwh.2022.896924. eCollection 2022.
8
How to study the menstrual cycle: Practical tools and recommendations.如何研究月经周期:实用工具和建议。
Psychoneuroendocrinology. 2021 Jan;123:104895. doi: 10.1016/j.psyneuen.2020.104895. Epub 2020 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验