Snider Samuel B, Molyneaux Bradley J, Murthy Anarghya, Rademaker Quinn, Rajwani Hafeez, Scirica Benjamin M, Lee Jong Woo, Connor Christopher W
Division of Neurocritical Care, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
Anesthesiology. 2025 May 1;142(5):806-817. doi: 10.1097/ALN.0000000000005369. Epub 2025 Jan 9.
Accurate prognostication in comatose survivors of cardiac arrest is a challenging and high-stakes endeavor. The authors sought to determine whether internal electroencephalogram (EEG) subparameters extracted by the BIS monitor (Medtronic, USA), a device commonly used to estimate depth of anesthesia intraoperatively, could be repurposed to predict recovery of consciousness after cardiac arrest.
In this retrospective cohort study, a three-layer neural network was trained to predict recovery of consciousness to the point of command following versus not based on 48 h of continuous EEG recordings in 315 comatose patients admitted to a single U.S. academic medical center after cardiac arrest (derivation cohort, n = 181; validation cohort, n = 134). Continuous EEGs were partially processed into subparameters using virtualized emulation of the BIS Engine ( i.e. , the internal software of the BIS monitor) applied to signals from the frontotemporal leads of the standard 10-20 EEG montage. The model was trained on hourly averaged measurements of these internal subparameters. This model's performance was compared to the modified Westhall qualitative EEG scoring framework.
Maximum prognostic accuracy in the derivation cohort was achieved using a network trained on only four BIS subparameters (inverse burst suppression ratio, mean spectral power density, gamma power, and theta/delta power). In a held-out sample of 134 patients, the model outperformed current state-of-the-art qualitative EEG assessment techniques at predicting recovery of consciousness (area under the receiver operating characteristics curve, 0.86; accuracy, 0.87; sensitivity, 0.83; specificity, 0.88; positive predictive value, 0.71; negative predictive value, 0.94). Gamma band power has not been previously reported as a correlate of recovery potential after cardiac arrest.
In patients comatose after cardiac arrest, four EEG features calculated internally by the BIS Engine were repurposed by a compact neural network to achieve a prognostic accuracy superior to the current clinical qualitative accepted standard, with high sensitivity for recovery. These features hold promise for assessing patients after cardiac arrest.
对心脏骤停昏迷幸存者进行准确的预后评估是一项具有挑战性且风险很高的工作。作者试图确定,由BIS监测仪(美敦力公司,美国)提取的内部脑电图(EEG)子参数是否可用于预测心脏骤停后意识的恢复。BIS监测仪是一种常用于术中估计麻醉深度的设备。
在这项回顾性队列研究中,训练了一个三层神经网络,根据美国一家学术医疗中心收治的315例心脏骤停后昏迷患者(推导队列,n = 181;验证队列,n = 134)连续48小时的脑电图记录,预测其是否能恢复到对指令有反应的意识状态。使用BIS引擎(即BIS监测仪的内部软件)的虚拟仿真,将连续脑电图部分处理为子参数,该仿真应用于标准10 - 20脑电图导联的额颞导联信号。该模型基于这些内部子参数的每小时平均测量值进行训练。将该模型的性能与改良的韦斯特霍尔定性脑电图评分框架进行比较。
在推导队列中,使用仅基于四个BIS子参数(反向爆发抑制率、平均谱功率密度γ功率和θ/δ功率)训练的网络可实现最大预后准确性。在134例患者的保留样本中,该模型在预测意识恢复方面优于当前最先进的定性脑电图评估技术(受试者操作特征曲线下面积为0.86;准确率为0.87;敏感性为0.83;特异性为0.88;阳性预测值为0.71;阴性预测值为0.94)。此前尚未报道γ波段功率与心脏骤停后恢复潜力相关。
在心脏骤停后昏迷的患者中,一个紧凑的神经网络重新利用了BIS引擎内部计算的四个脑电图特征,实现了优于当前临床定性公认标准的预后准确性,对恢复具有高敏感性。这些特征有望用于评估心脏骤停后的患者。