Prins Philip J, Noakes Timothy D, Buga Alex, Gerhart Hayden D, Cobb Brandon M, D'Agostino Dominic P, Volek Jeffrey S, Buxton Jeffrey D, Heckman Kara, Plank Emma, DiStefano Samuel, Flaming Isaak, Kirsch Lauren, Lagerquist Britta, Larson Emily, Koutnik Andrew P
Department of Exercise Science, Grove City College, Grove City, Pennsylvania, United States.
Department of Medical and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa.
Am J Physiol Cell Physiol. 2025 Feb 1;328(2):C710-C727. doi: 10.1152/ajpcell.00583.2024. Epub 2025 Jan 9.
Very-low-carbohydrate diets (LCHF; <50 g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70% V̇o) tests in trained triathletes following 6-wk high-carbohydrate (HCLF, 380 g/day) or very-low-carbohydrate (LCHF, 40 g/day) diets to determine ) if adoption of the LCHF diet impairs time-to-exhaustion performance, ) whether carbohydrate ingestion (10 g/h) 6-12× lower than current CHO fueling recommendations during low glycogen availability (>15-h pre-exercise overnight fast and/or LCHF diet) improves time to exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.9 mmol/L; <70 mg/dL), and ) the "keto-adaptation" time course through continuous substrate monitoring while caloric intake, physical activity, and fat-free mass are maintained. Time-to-exhaustion performance was similar across both dietary interventions. Minimal carbohydrate supplementation prevented EIH and significantly increased time to exhaustion equivalently in LCHF and HCLF interventions (22%). The LCHF diet significantly lowered 24-h glucose concentrations, which normalized after 4 wk, at the same timepoint peak blood ketone (-β-hydroxybutyrate) concentrations normalized. These findings ) demonstrate that an LCHF diet sustains strenuous endurance performance, ) establish that minimal carbohydrate supplementation was sufficient to enhance exercise performance on LCHF and HCLF diets by mitigating EIH, and ) indicate that a minimum 4-wk adaptation period to an LCHF diet is required to ensure normalization of metabolic homeostasis, glycemic control, and exercise performance. This study examines the belief that very-low-carbohydrate diets (LCHF) impair prolonged exercise performance during strenuous exercise by comparing it with high-carbohydrate diets in competitive triathletes. After 6-wk diet adaptation, time-to-exhaustion (TTE) performance was similar across both diets. Minimal carbohydrate supplementation (10 g/h) during exercise eliminated exercise-induced hypoglycemia and improved TTE by 22% on both diets. These findings suggest that LCHF diets do not impair exercise performance and require a 4-wk adaptation period for metabolic homeostasis.
极低碳水化合物饮食(LCHF;每日<50克)因其可能降低运动前肌肉和肝脏糖原储备以及代谢效率,有引发过早疲劳的风险而备受争议。还有假设认为,长时间运动期间摄入碳水化合物可通过增加碳水化合物氧化来延迟疲劳,从而节省肌肉糖原。我们采用随机交叉设计,评估了训练有素的铁人三项运动员在进行6周高碳水化合物(HCLF,每日380克)或极低碳水化合物(LCHF,每日40克)饮食后,在剧烈力竭时间测试(70% V̇o)中的表现,以确定:1)采用LCHF饮食是否会损害力竭时间表现;2)在糖原可用性较低(运动前禁食超过15小时和/或LCHF饮食)期间,碳水化合物摄入量(每小时10克)比当前碳水化合物供能建议低6 - 12倍,是否能通过预防运动诱发的低血糖(EIH;<3.9毫摩尔/升;<70毫克/分升)来提高力竭时间;3)在维持热量摄入、身体活动和去脂体重的同时,通过连续底物监测确定“酮适应”的时间进程。两种饮食干预下的力竭时间表现相似。最低限度的碳水化合物补充可预防EIH,并在LCHF和HCLF干预中同等程度地显著增加力竭时间(22%)。LCHF饮食显著降低了24小时血糖浓度,4周后恢复正常,同时血酮( -β-羟基丁酸)浓度在同一时间点达到峰值并恢复正常。这些发现:1)表明LCHF饮食能维持剧烈耐力表现;2)证实最低限度的碳水化合物补充足以通过减轻EIH来提高LCHF和HCLF饮食的运动表现;) 3)表明需要至少4周的LCHF饮食适应期,以确保代谢稳态、血糖控制和运动表现恢复正常。本研究通过在竞技铁人三项运动员中将极低碳水化合物饮食(LCHF)与高碳水化合物饮食进行比较,检验了极低碳水化合物饮食会损害剧烈运动中长时间运动表现这一观点。经过6周饮食适应后,两种饮食的力竭时间(TTE)表现相似。运动期间最低限度的碳水化合物补充(每小时10克)消除了运动诱发的低血糖,并使两种饮食下的TTE提高了22%。这些发现表明,LCHF饮食不会损害运动表现,且需要4周的适应期来实现代谢稳态。