Suppr超能文献

基于病例报告的ChatGPT辅助神经眼科疾病诊断

ChatGPT Assisting Diagnosis of Neuro-Ophthalmology Diseases Based on Case Reports.

作者信息

Madadi Yeganeh, Delsoz Mohammad, Lao Priscilla A, Fong Joseph W, Hollingsworth T J, Kahook Malik Y, Yousefi Siamak

机构信息

Department of Ophthalmology (YM, MD, PAL, JWF, TJH, SY), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Ophthalmology (MYK), University of Colorado School of Medicine, Aurora, Colorado; and Department of Genetics, Genomics, and Informatics (SY), University of Tennessee Health Science Center, Memphis, Tennessee.

出版信息

J Neuroophthalmol. 2024 Oct 10. doi: 10.1097/WNO.0000000000002274.

Abstract

BACKGROUND

To evaluate the accuracy of Chat Generative Pre-Trained Transformer (ChatGPT), a large language model (LLM), to assist in diagnosing neuro-ophthalmic diseases based on case reports.

METHODS

We selected 22 different case reports of neuro-ophthalmic diseases from a publicly available online database. These cases included a wide range of chronic and acute diseases commonly seen by neuro-ophthalmic subspecialists. We inserted each case as a new prompt into ChatGPTs (GPT-3.5 and GPT-4) and asked for the most probable diagnosis. We then presented the exact information to 2 neuro-ophthalmologists and recorded their diagnoses, followed by comparing responses from both versions of ChatGPT.

RESULTS

GPT-3.5 and GPT-4 and the 2 neuro-ophthalmologists were correct in 13 (59%), 18 (82%), 19 (86%), and 19 (86%) out of 22 cases, respectively. The agreements between the various diagnostic sources were as follows: GPT-3.5 and GPT-4, 13 (59%); GPT-3.5 and the first neuro-ophthalmologist, 12 (55%); GPT-3.5 and the second neuro-ophthalmologist, 12 (55%); GPT-4 and the first neuro-ophthalmologist, 17 (77%); GPT-4 and the second neuro-ophthalmologist, 16 (73%); and first and second neuro-ophthalmologists 17 (77%).

CONCLUSIONS

The accuracy of GPT-3.5 and GPT-4 in diagnosing patients with neuro-ophthalmic diseases was 59% and 82%, respectively. With further development, GPT-4 may have the potential to be used in clinical care settings to assist clinicians in providing quick, accurate diagnoses of patients in neuro-ophthalmology. The applicability of using LLMs like ChatGPT in clinical settings that lack access to subspeciality trained neuro-ophthalmologists deserves further research.

摘要

背景

为评估大型语言模型Chat生成式预训练变换器(ChatGPT)基于病例报告辅助诊断神经眼科疾病的准确性。

方法

我们从一个公开的在线数据库中选取了22份不同的神经眼科疾病病例报告。这些病例包括神经眼科亚专科医生常见的各种慢性和急性疾病。我们将每个病例作为新的提示输入到ChatGPT(GPT-3.5和GPT-4)中,并询问最可能的诊断。然后,我们将确切信息呈现给2名神经眼科医生并记录他们的诊断结果,随后比较两个版本ChatGPT的回答。

结果

GPT-3.5、GPT-4以及2名神经眼科医生在22例病例中分别正确诊断了13例(59%)、18例(82%)、19例(86%)和19例(86%)。不同诊断来源之间的一致性如下:GPT-3.5和GPT-4为13例(59%);GPT-3.5和第一位神经眼科医生为12例(55%);GPT-3.5和第二位神经眼科医生为12例(55%);GPT-4和第一位神经眼科医生为17例(77%);GPT-4和第二位神经眼科医生为16例(73%);第一位和第二位神经眼科医生为17例(77%)。

结论

GPT-3.5和GPT-4诊断神经眼科疾病患者的准确率分别为59%和82%。随着进一步发展,GPT-4可能有潜力用于临床护理环境,以协助临床医生对神经眼科患者进行快速、准确的诊断。在缺乏经过亚专科培训的神经眼科医生的临床环境中使用像ChatGPT这样的大型语言模型的适用性值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验