文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Large Language Models: Pioneering New Educational Frontiers in Childhood Myopia.

作者信息

Delsoz Mohammad, Hassan Amr, Nabavi Amin, Rahdar Amir, Fowler Brian, Kerr Natalie C, Ditta Lauren Claire, Hoehn Mary E, DeAngelis Margaret M, Grzybowski Andrzej, Tham Yih-Chung, Yousefi Siamak

机构信息

Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave., Suite 471, Memphis, TN, 38163, USA.

Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA.

出版信息

Ophthalmol Ther. 2025 Jun;14(6):1281-1295. doi: 10.1007/s40123-025-01142-x. Epub 2025 Apr 21.


DOI:10.1007/s40123-025-01142-x
PMID:40257570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12069199/
Abstract

INTRODUCTION: This study aimed to evaluate the performance of three large language models (LLMs), namely ChatGPT-3.5, ChatGPT-4o (o1 Preview), and Google Gemini, in producing patient education materials (PEMs) and improving the readability of online PEMs on childhood myopia. METHODS: LLM-generated responses were assessed using three prompts. Prompt A requested to "Write educational material on childhood myopia." Prompt B added a modifier specifying "a sixth-grade reading level using the FKGL (Flesch-Kincaid Grade Level) readability formula." Prompt C aimed to rewrite existing PEMs to a sixth-grade level using FKGL. Reponses were assessed for quality (DISCERN tool), readability (FKGL, SMOG (Simple Measure of Gobbledygook)), Patient Education Materials Assessment Tool (PEMAT, understandability/actionability), and accuracy. RESULTS: ChatGPT-4o (01) and ChatGPT-3.5 generated good-quality PEMs (DISCERN 52.8 and 52.7, respectively); however, quality declined from prompt A to prompt B (p = 0.001 and p = 0.013). Google Gemini produced fair-quality (DISCERN 43) but improved with prompt B (p = 0.02). All PEMs exceeded the 70% PEMAT understandability threshold but failed the 70% actionability threshold (40%). No misinformation was identified. Readability improved with prompt B; ChatGPT-4o (01) and ChatGPT-3.5 achieved a sixth-grade level or below (FGKL 6 ± 0.6 and 6.2 ± 0.3), while Google Gemini did not (FGKL 7 ± 0.6). ChatGPT-4o (01) outperformed Google Gemini in readability (p < 0.001) but was comparable to ChatGPT-3.5 (p = 0.846). Prompt C improved readability across all LLMs, with ChatGPT-4o (o1 Preview) showing the most significant gains (FKGL 5.8 ± 1.5; p < 0.001). CONCLUSIONS: ChatGPT-4o (o1 Preview) demonstrates potential in producing accurate, good-quality, understandable PEMs, and in improving online PEMs on childhood myopia.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/680a/12069199/4f3be7163be4/40123_2025_1142_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/680a/12069199/0aec89379ff6/40123_2025_1142_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/680a/12069199/a39f5e226644/40123_2025_1142_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/680a/12069199/4f3be7163be4/40123_2025_1142_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/680a/12069199/0aec89379ff6/40123_2025_1142_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/680a/12069199/a39f5e226644/40123_2025_1142_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/680a/12069199/4f3be7163be4/40123_2025_1142_Fig3_HTML.jpg

相似文献

[1]
Large Language Models: Pioneering New Educational Frontiers in Childhood Myopia.

Ophthalmol Ther. 2025-6

[2]
Leveraging large language models to improve patient education on dry eye disease.

Eye (Lond). 2025-4

[3]
Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models.

Neurol Clin Pract. 2025-2

[4]
Large language models: unlocking new potential in patient education for thyroid eye disease.

Endocrine. 2025-7-19

[5]
Enhancing the Readability of Online Patient Education Materials Using Large Language Models: Cross-Sectional Study.

J Med Internet Res. 2025-6-4

[6]
Currently Available Large Language Models Are Moderately Effective in Improving Readability of English and Spanish Patient Education Materials in Pediatric Orthopaedics.

J Am Acad Orthop Surg. 2025-6-24

[7]
Readability, Reliability, and Quality Analysis of Internet-Based Patient Education Materials and Large Language Models on Meniere's Disease.

J Otolaryngol Head Neck Surg. 2025

[8]
Implementing Generative AI to Enhance Patient Education on Retinopathy of Prematurity.

J Pediatr Ophthalmol Strabismus. 2025-6-27

[9]
Bridging Health Literacy Gaps in Spine Care: Using ChatGPT-4o to Improve Patient-Education Materials.

J Bone Joint Surg Am. 2025-6-19

[10]
Using Large Language Models to Generate Educational Materials on Childhood Glaucoma.

Am J Ophthalmol. 2024-9

本文引用的文献

[1]
ChatGPT Assisting Diagnosis of Neuro-Ophthalmology Diseases Based on Case Reports.

J Neuroophthalmol. 2024-10-10

[2]
ChatGPT Assisting Diagnosis of Neuro-Ophthalmology Diseases Based on Case Reports.

J Neuroophthalmol. 2024-10-10

[3]
Comparison of Renal Adverse Events Between Intravitreal Anti-Vascular Endothelial Growth Factor Agents: A Meta-Analysis.

Am J Ophthalmol. 2025-3

[4]
Optic nerve sheath enhancement on orbital MRI in giant cell arteritis.

Br J Ophthalmol. 2025-5-30

[5]
With Nearsightedness in Children on the Rise, Experts Push for Outdoor Time, Disease Designation.

JAMA. 2024-11-19

[6]
Applications of ChatGPT in the diagnosis, management, education, and research of retinal diseases: a scoping review.

Int J Retina Vitreous. 2024-10-17

[7]
Diagnosing Glaucoma Based on the Ocular Hypertension Treatment Study Dataset Using Chat Generative Pre-Trained Transformer as a Large Language Model.

Ophthalmol Sci. 2024-8-22

[8]
Global prevalence, trend and projection of myopia in children and adolescents from 1990 to 2050: a comprehensive systematic review and meta-analysis.

Br J Ophthalmol. 2025-2-24

[9]
Readability, Understandability, Usability, and Cultural Sensitivity of Online Patient Educational Materials (PEMs) for Lower Extremity Reconstruction: A Cross-Sectional Study.

Plast Surg (Oakv). 2024-8

[10]
Predicting Glaucoma Before Onset Using a Large Language Model Chatbot.

Am J Ophthalmol. 2024-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索