Kallout Julien, Lamer Antoine, Grosjean Julien, Kerdelhué Gaétan, Bouzillé Guillaume, Clavier Thomas, Popoff Benjamin
Department of Anesthesiology and Critical Care, CHU Rouen, Rouen, France.
Univ Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France.
J Med Internet Res. 2025 Jan 9;27:e57263. doi: 10.2196/57263.
Intensive care units (ICUs) handle the most critical patients with a high risk of mortality. Due to those conditions, close monitoring is necessary and therefore, a large volume of data is collected. Collaborative ventures have enabled the emergence of large open access databases, leading to numerous publications in the field.
The aim of this scoping review is to identify the characteristics of studies using open access intensive care databases and to describe the contribution of these studies to intensive care research.
The research was conducted using 3 databases (PubMed-MEDLINE, Embase, and Web of Science) from the inception of each database to August 1, 2022. We included original articles based on 4 open databases of patients admitted to ICUs: Amsterdam University Medical Centers Database, eICU Collaborative Research Database, High time resolution ICU dataset, Medical Information Mart for Intensive Care (II to IV). A double-blinded screening for eligibility was performed, first on the title and abstract and subsequently on the full-text articles. Characteristics relating to publication journals, study design, and statistical analyses were extracted and analyzed.
We observed a consistent increase in the number of publications from these databases since 2016. The Medical Information Mart for Intensive Care databases were the most frequently used. The highest contributions came from China and the United States, with 689 (52.7%) and 370 (28.3%) publications respectively. The median impact factor of publications was 3.8 (IQR 2.8-5.8). Topics related to cardiovascular and infectious diseases were predominant, accounting for 333 (25.5%) and 324 (24.8%) articles, respectively. Logistic regression emerged as the most commonly used statistical model for both inference and prediction questions, featuring in 396 (55.5%) and 281 (47.5%) studies, respectively. A majority of the inference studies yielded statistically significant results (84.0%). In prediction studies, area under the curve was the most frequent performance measure, with a median value of 0.840 (IQR 0.780-0.890).
The abundance of scientific outputs resulting from these databases, coupled with the diversity of topics addressed, highlight the importance of these databases as valuable resources for clinical research. This suggests their potential impact on clinical practice within intensive care settings. However, the quality and clinical relevance of these studies remains highly heterogeneous, with a majority of articles being published in low-impact factor journals.
重症监护病房(ICU)收治的是死亡率极高的最危重患者。鉴于这些情况,密切监测是必要的,因此会收集大量数据。合作项目催生了大型开放获取数据库,该领域也因此发表了大量论文。
本综述的目的是确定使用开放获取重症监护数据库的研究特点,并描述这些研究对重症监护研究的贡献。
研究使用了3个数据库(PubMed-MEDLINE、Embase和Web of Science),时间跨度从各数据库创建之初至2022年8月1日。我们纳入了基于4个ICU患者开放数据库的原创文章:阿姆斯特丹大学医学中心数据库、电子ICU协作研究数据库、高时间分辨率ICU数据集、重症监护医学信息集市(二至四)。首先对标题和摘要进行双盲筛选以确定是否符合要求,随后对全文进行筛选。提取并分析与发表期刊、研究设计和统计分析相关的特征。
自2016年以来,我们观察到这些数据库的论文数量持续增加。重症监护医学信息集市数据库使用最为频繁。贡献最大的是中国和美国,分别有689篇(52.7%)和370篇(28.3%)论文发表。发表论文的影响因子中位数为3.8(四分位间距2.8 - 5.8)。与心血管疾病和传染病相关的主题占主导地位,分别有333篇(25.5%)和324篇(24.8%)文章。逻辑回归是推理和预测问题中最常用的统计模型,分别在396项(占55.5%)和281项(占47.5%)研究中出现。大多数推理研究得出了具有统计学意义的结果(84.0%)。在预测研究中,曲线下面积是最常用的性能指标,中位数为0.840(四分位间距0.780 - 0.890)。
这些数据库产生的丰富科学成果,以及所涉及主题的多样性,凸显了这些数据库作为临床研究宝贵资源的重要性。这表明它们对重症监护环境下的临床实践可能产生影响。然而,这些研究的质量和临床相关性仍然高度异质,大多数文章发表在影响因子较低的期刊上。