Bhutani Nitika, Murugesan Premkumar, Baro Sushmita, Koner Rik Rani
School of Chemical sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India.
School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India.
J Colloid Interface Sci. 2025 Apr;683(Pt 2):1087-1099. doi: 10.1016/j.jcis.2024.12.107. Epub 2024 Dec 19.
Developing a two-dimensional (2D) ultrathin metal-organic framework plays a significant role in energy conversion and storage systems. This work introduced a facile strategy for engineering ultrathin NiMn-MOF nanosheets on Ni foam (NF) via in situ conversion from NiMn-layered double hydroxide (LDH). The as-synthesized LDH-derived NiMn-MOF (LDH-D NiMn-MOF) nanosheet exhibited an overpotential of 350 mV to drive a current density of 100 mA cm during oxygen evolution reaction (OER) owing to its better redox activity, hierarchical architecture, and intercalating ability. The similar effective catalytic trend was noticed during the urea-assisted water oxidation process. The developed catalyst required only a potential of 1.39 V vs. RHE at 100 mA cm towards urea oxidation reaction (UOR). Moreover, the urea-assisted overall water-splitting voltage was found to be 1.5 V at the current density of 10 mA cm. Furthermore, the same catalyst was explored as an energy-storage material for supercapattery application with an aerial specific capacity value of 2613.9 mC cm at 1 mA cm which was found to be 1.5 times higher than NiMn-LDH (1724.3 mC cm). Additionally, an aqueous asymmetric supercapattery device was fabricated which demonstrated the best electrochemical performance and provided a maximum energy density of 64.1 Wh kg at a power density of 493 W kg with 77.8 percent capacity retention after a continuous run of 8000 cycles at 10 mA cm current density. Hence, the multifaceted properties of energy conversion and storage of LDH-D NiMn-MOF outline its performance in real-world applications.
开发二维(2D)超薄金属有机框架在能量转换和存储系统中起着重要作用。这项工作介绍了一种简便的策略,通过从镍锰层状双氢氧化物(LDH)原位转化,在泡沫镍(NF)上制备超薄NiMn-MOF纳米片。所合成的由LDH衍生的NiMn-MOF(LDH-D NiMn-MOF)纳米片在析氧反应(OER)过程中,由于其更好的氧化还原活性、分级结构和插层能力,在驱动100 mA cm的电流密度时过电位为350 mV。在尿素辅助水氧化过程中也观察到了类似的有效催化趋势。所开发的催化剂在100 mA cm下对尿素氧化反应(UOR)仅需相对于可逆氢电极(RHE)为1.39 V的电位。此外,在10 mA cm的电流密度下,尿素辅助的全水解电压为1.5 V。此外,该催化剂还被探索用作超级电容器应用的储能材料,在1 mA cm下的面积比容量值为2613.9 mC cm,发现比NiMn-LDH(1724.3 mC cm)高1.5倍。此外,还制备了一种水系非对称超级电容器装置,该装置展示了最佳的电化学性能,在493 W kg的功率密度下提供了64.1 Wh kg的最大能量密度,在10 mA cm的电流密度下连续运行8000次循环后容量保持率为77.8%。因此,LDH-D NiMn-MOF在能量转换和存储方面的多方面特性概述了其在实际应用中的性能。