Suppr超能文献

调控三金属催化活性以实现安培级电流密度下高效尿素电氧化耦合产氢

Manipulating Trimetal Catalytic Activities for Efficient Urea Electrooxidation-Coupled Hydrogen Production at Ampere-Level Current Densities.

作者信息

Sun Huachuan, Luo Zhonge, Chen Mingpeng, Zhou Tong, Wang Boxue, Xiao Bin, Lu Qingjie, Zi Baoye, Zhao Kai, Zhang Xia, Zhao Jianhong, He Tianwei, Zhang Jin, Cui Hao, Liu Feng, Wang Chundong, Wang Dingsheng, Liu Qingju

机构信息

National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China.

Department of Physics, College of Science, Shihezi University, Xinjiang 832003, P. R. China.

出版信息

ACS Nano. 2024 Dec 31;18(52):35654-35670. doi: 10.1021/acsnano.4c14406. Epub 2024 Dec 11.

Abstract

Replacing the oxygen evolution reaction (OER) with the urea oxidation reaction (UOR) in conjunction with the hydrogen evolution reaction (HER) offers a feasible and environmentally friendly approach for handling urea-rich wastewater and generating energy-saving hydrogen. However, the deactivation and detachment of active sites in powder electrocatalysts reported hitherto present significant challenges to achieving high efficiency and sustainability in energy-saving hydrogen production. Herein, a self-supported bimetallic nickel manganese metal-organic framework (NiMn-MOF) nanosheet and its derived heterostructure composed of NiMn-MOF decorated with ultrafine Pt nanocrystals (Pt/NiMn-MOF) are rationally designed. By leveraging the synergistic effect of Mn and Ni, along with the strong electronic interaction between NiMn-MOF and Pt at the interface, the optimized catalysts (NiMn-MOF and Pt/NiMn-MOF) exhibit substantially reduced potentials of 1.459 and -0.129 V to reach 1000 mA cm during the UOR and HER. Theoretical calculations confirm that Mn-doping and the heterointerface between NiMn-MOF and Pt nanocrystals regulate the d-band center of the catalyst, which in turn enhances electron transfer and facilitates charge redistribution. This manipulation optimizes the adsorption/desorption energies of the reactants and intermediates in both the HER and UOR, thereby significantly reducing the energy barrier of the rate-determining step (RDS) and enhancing the electrocatalytic performance. Furthermore, the urea degradation rates of Pt/NiMn-MOF (96.1%) and NiMn-MOF (90.3%) are significantly higher than those of Ni-MOF and the most reported advanced catalysts. This work provides valuable insights for designing catalysts applicable to urea-rich wastewater treatment and energy-saving hydrogen production.

摘要

将析氧反应(OER)替换为尿素氧化反应(UOR)并结合析氢反应(HER),为处理富含尿素的废水和生产节能氢气提供了一种可行且环保的方法。然而,迄今为止报道的粉末电催化剂中活性位点的失活和脱离,对实现节能制氢的高效率和可持续性提出了重大挑战。在此,合理设计了一种自支撑双金属镍锰金属有机框架(NiMn-MOF)纳米片及其由装饰有超细Pt纳米晶体的NiMn-MOF组成的衍生异质结构(Pt/NiMn-MOF)。通过利用Mn和Ni的协同效应,以及NiMn-MOF与Pt在界面处的强电子相互作用,优化后的催化剂(NiMn-MOF和Pt/NiMn-MOF)在UOR和HER过程中达到1000 mA cm时的电位大幅降低,分别为1.459 V和 -0.129 V。理论计算证实,Mn掺杂以及NiMn-MOF与Pt纳米晶体之间的异质界面调节了催化剂的d带中心,进而增强了电子转移并促进了电荷重新分布。这种调控优化了HER和UOR中反应物和中间体的吸附/解吸能量,从而显著降低了速率决定步骤(RDS)的能垒并提高了电催化性能。此外,Pt/NiMn-MOF(96.1%)和NiMn-MOF(90.3%)的尿素降解率明显高于Ni-MOF和大多数已报道的先进催化剂。这项工作为设计适用于富含尿素废水处理和节能制氢的催化剂提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验