Suppr超能文献

基于数字孪生系统建设要求的畜禽舍温度虚拟采集方法研究

Research on virtual collection method of layer house temperature for the construction requirements of digital twin system.

作者信息

Jia Yuchen, Li Lihua, Gao Liai

机构信息

Hebei Agricultural University, Baoding, Hebei 071000, China; Key Laboratory of Intelligent Equipment and New Energy Utilization in Livestock and Poultry Farming of Hebei Province, Baoding, Hebei 071000, China.

Hebei Agricultural University, Baoding, Hebei 071000, China; Key Laboratory of Intelligent Equipment and New Energy Utilization in Livestock and Poultry Farming of Hebei Province, Baoding, Hebei 071000, China; Key Laboratory of Facilities for Poultry and Egg Production Engineering, Ministry of Agriculture and Rural Affairs, Baoding, Hebei 071000, China.

出版信息

Poult Sci. 2025 Feb;104(2):104771. doi: 10.1016/j.psj.2025.104771. Epub 2025 Jan 3.

Abstract

At present, in the context of the highly intensive development of livestock and poultry breeding, digital management is becoming increasingly important, and digital twin systems are gradually being applied. To solve the contradiction between data acquisition and sensor network congestion, a virtual acquisition method based on historical data and real-time reference of point data is proposed when constructing a digital twin system. Firstly, computational fluid dynamics (CFD) simulation was used to analyze and determine the temperature distribution and environmental characteristics inside the layer house, and the collection area was preliminarily divided according to the CFD simulation results. Then, combined with gray correlation degree and cosine similarity analysis, it can effectively identify the reference points highly correlated with the temperature of the key unmonitored area. Finally, WOA was used to optimize the BiLSTM hyperparameters and construct a WOA-BiLSTM virtual acquisition model. It is based on the XGBoost algorithm to determine the actual data collection points, predict the current value based on the actual data of the reference point and the historical data of the test point, and complete virtual collection. Through the test in a farm, the average absolute error between the data of 10 virtual collection points and the actual data was within 0.25 °C, which ensured the reliability of the data. It analyzes the data volume requirements for digital twin modeling and theoretically verifies the supporting role of virtual collection in the construction of digital twin systems.

摘要

目前,在畜禽养殖高度集约化发展的背景下,数字化管理变得越来越重要,数字孪生系统也逐渐得到应用。为了解决数据采集与传感器网络拥塞之间的矛盾,在构建数字孪生系统时提出了一种基于历史数据和点数据实时参考的虚拟采集方法。首先,利用计算流体动力学(CFD)模拟分析并确定层舍内部的温度分布和环境特征,并根据CFD模拟结果初步划分采集区域。然后,结合灰色关联度和余弦相似度分析,能够有效识别与关键未监测区域温度高度相关的参考点。最后,采用鲸鱼优化算法(WOA)优化双向长短期记忆网络(BiLSTM)的超参数,构建WOA-BiLSTM虚拟采集模型。它基于XGBoost算法确定实际数据采集点,根据参考点的实际数据和测试点的历史数据预测当前值,完成虚拟采集。通过在一个养殖场的测试,10个虚拟采集点的数据与实际数据之间的平均绝对误差在0.25℃以内,保证了数据的可靠性。分析了数字孪生建模的数据量需求,并从理论上验证了虚拟采集在数字孪生系统构建中的支撑作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f42/11762178/8ca882a04224/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验