Sanchez Julieta M, Voltà-Durán Eric, Parladé Eloi, Mangues Ramón, Villaverde Antonio, Vázquez Esther, Unzueta Ugutz
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina.
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
Int J Biol Macromol. 2025 Mar;296:139635. doi: 10.1016/j.ijbiomac.2025.139635. Epub 2025 Jan 7.
In nature, nontoxic protein amyloids serve as dynamic, protein-specific depots, exemplified by both bacterial inclusion bodies and secretory granules from the endocrine system. Inspired by these systems, chemically defined and regulatory-compliant artificial protein microgranules have been developed for clinical applications as endocrine-like protein repositories. This has been achieved by exploiting the reversible coordination between histidine residues and divalent cations such as Zn, that promotes protein-protein interactions. While stereospecificity is a main architectonic feature of natural amyloids, the potential for synthetic approaches to create hybrid protein materials remains unexplored. Such materials could enable the occurrence and synchronized local application of diverse proteins in predefined molar ratios, for coupled enzymatic reactions or delivery of synergistically acting polypeptides. Here, we report on the fabrication of artificial protein granules with amyloidal architecture formed by combining two structurally distinct polypeptides. Specifically, we tested co-aggregation of the pairs GFP/IRFP and GFP/β-galactosidase. The formation of hybrid microparticles was confirmed through FRET and complementary methodologies, demonstrating that the His-Zn clustering technology does not require sequential or structural homologies between aggregating polypeptides. This approach opens new avenues for the development of functional depots that capitalize on synergistic protein functionalities, paving the way for next-generation functional materials.
在自然界中,无毒蛋白质淀粉样蛋白充当动态的、蛋白质特异性的储存库,细菌包涵体和内分泌系统的分泌颗粒就是例证。受这些系统的启发,已开发出化学定义明确且符合法规要求的人工蛋白质微粒,作为类似内分泌的蛋白质储存库用于临床应用。这是通过利用组氨酸残基与二价阳离子(如锌)之间的可逆配位来实现的,这种配位促进了蛋白质-蛋白质相互作用。虽然立体特异性是天然淀粉样蛋白的主要结构特征,但合成方法创建杂合蛋白质材料的潜力仍未得到探索。此类材料能够使不同蛋白质以预定义的摩尔比出现并同步局部应用,用于偶联酶促反应或协同作用多肽的递送。在此,我们报告了通过结合两种结构不同的多肽形成具有淀粉样结构的人工蛋白质颗粒的制备方法。具体而言,我们测试了绿色荧光蛋白(GFP)/红外荧光蛋白(IRFP)和绿色荧光蛋白(GFP)/β-半乳糖苷酶这两对的共聚集。通过荧光共振能量转移(FRET)和互补方法证实了杂合微粒的形成,表明组氨酸-锌聚类技术不需要聚集多肽之间的序列或结构同源性。这种方法为开发利用蛋白质协同功能的功能性储存库开辟了新途径,为下一代功能材料铺平了道路。