Siler Tessa, Stanley Logan, Saleem Mariam, Badalyan Artavazd
Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322, USA.
Department of Chemistry, University of Louisiana at Lafayette, 300 East St. Mary Blvd, Lafayette, LA, 70504, USA.
Anal Chim Acta. 2025 Jan 22;1336:343480. doi: 10.1016/j.aca.2024.343480. Epub 2024 Nov 28.
A rapid and accurate biosensor for detecting disease biomarkers at point-of-care is essential for early disease diagnosis and preventing pandemics. CRISPR-Cas12a is a promising recognition element for DNA biosensors due to its programmability, specificity, and deoxyribonuclease activity initiated in the presence of a biomarker. The current electrochemical CRISPR-Cas12a-based biosensors utilize the single-stranded DNA (ssDNA) self-assembled on an electrode surface and covalently modified with the redox indicator, usually methylene blue (MB). In the presence of a biomarker, the nuclease domain is activated and cleaves ssDNA, decreasing the redox indicator signal. The covalent attachment of the MB to the ssDNA implies complexity and a higher production cost. Alternatively, some redox indicators can noncovalently bind to the ssDNA. Although such indicators have been applied for electrochemical nucleic acid detection, their potential for electrochemical CRISPR-Cas-based biosensors has not been explored. In this work, a ruthenium complex, [Ru(NH)], was investigated as a redox indicator non-covalently binding to the ssDNA. Voltammetric studies and the optimization resulted in a simple and robust electrochemical method that was tested for deoxyribonuclease I (DNase I) activity detection and applied in the CRISPR-Cas12a-based biosensor for viral DNA (HPV-16). The biosensors revealed good analytical properties and represent an alternative to reported biosensors for nuclease activity requiring a covalent attachment of the redox indicator. Moreover, the developed method offers prospects for advancement and can be transformed to operate with other Cas nucleases to detect RNA and other analytes.
一种能够在护理点快速准确检测疾病生物标志物的生物传感器对于疾病的早期诊断和预防大流行至关重要。CRISPR-Cas12a因其可编程性、特异性以及在生物标志物存在时引发的脱氧核糖核酸酶活性,是DNA生物传感器中一种很有前景的识别元件。当前基于CRISPR-Cas12a的电化学生物传感器利用在电极表面自组装并共价修饰有氧化还原指示剂(通常为亚甲基蓝(MB))的单链DNA(ssDNA)。在生物标志物存在的情况下,核酸酶结构域被激活并切割ssDNA,从而降低氧化还原指示剂信号。MB与ssDNA的共价连接意味着复杂性和更高的生产成本。另外,一些氧化还原指示剂可以与ssDNA非共价结合。尽管此类指示剂已应用于电化学核酸检测,但其在基于CRISPR-Cas的电化学生物传感器中的潜力尚未得到探索。在这项工作中,研究了一种钌配合物[Ru(NH)]作为与ssDNA非共价结合的氧化还原指示剂。伏安法研究和优化产生了一种简单且稳健的电化学方法,该方法用于检测脱氧核糖核酸酶I(DNase I)活性,并应用于基于CRISPR-Cas12a的病毒DNA(HPV-16)生物传感器。这些生物传感器显示出良好的分析性能,是报道的需要氧化还原指示剂共价连接来检测核酸酶活性的生物传感器的一种替代方案。此外,所开发的方法具有改进的前景,并且可以进行改造以与其他Cas核酸酶一起操作以检测RNA和其他分析物。