Wu Xinxin, Yuan Zhecong, Gao Shujie, Zhang Xinai, El-Mesery Hany S, Lu Wenjie, Dai Xiaoli, Xu Rongjin
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
Foods. 2025 Jul 29;14(15):2669. doi: 10.3390/foods14152669.
Electrochemical biosensors are revolutionizing food testing by addressing critical limitations of conventional strategies that suffer from cost, complexity, and field-deployment challenges. Emerging fluorescence and Raman techniques, while promising, face intrinsic drawbacks like photobleaching and matrix interference in opaque or heterogeneous samples. In contrast, electrochemical biosensors leverage electrical signals to bypass optical constraints, enabling rapid, cost-effective, and pretreatment-free analysis of turbid food matrices. This review highlights their operational mechanisms, emphasizing nano-enhanced signal amplification (e.g., Au nanoparticles and graphene) and biorecognition elements (antibodies, aptamers, and molecularly imprinted polymers) for ultrasensitive assay of contaminants, additives, and adulterants. By integrating portability, scalability, and real-time capabilities, electrochemical biosensors align with global food safety regulations and sustainability goals. Challenges in standardization, multiplexed analysis, and long-term stability are discussed, alongside future directions toward AI-driven analytics, biodegradable sensors, and blockchain-enabled traceability, ultimately fostering precision-driven, next-generation food safety and quality testing.
电化学生物传感器正在彻底改变食品检测方式,解决了传统策略面临的成本、复杂性和现场部署等关键限制。新兴的荧光和拉曼技术虽然前景广阔,但存在诸如光漂白以及在不透明或异质样品中存在基质干扰等固有缺点。相比之下,电化学生物传感器利用电信号绕过光学限制,能够对浑浊的食品基质进行快速、经济高效且无需预处理的分析。本综述重点介绍了它们的运行机制,强调了纳米增强信号放大(如金纳米颗粒和石墨烯)以及生物识别元件(抗体、适体和分子印迹聚合物)在超灵敏检测污染物、添加剂和掺假物方面的应用。通过集成便携性、可扩展性和实时能力,电化学生物传感器符合全球食品安全法规和可持续发展目标。文中讨论了标准化、多重分析和长期稳定性方面的挑战,以及人工智能驱动的分析、可生物降解传感器和区块链溯源等未来发展方向,最终推动精准驱动的下一代食品安全和质量检测。