Ren Kewei, Li Yuanfang, Liu Qingqing
College of Resources and Environment, Southwest University, Chongqing, 400716, China.
College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
Anal Chim Acta. 2025 Jan 22;1336:343523. doi: 10.1016/j.aca.2024.343523. Epub 2024 Dec 5.
Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity. Nanozyme-based colorimetric detection can amplify signals and improve detection sensitivity by catalytically converting a minimal substrate quantity into a substantial amount. However, current nanozymes-based As(V) detection methods still suffer from prolonged response time and the lack of convenient detection tools.
We develop a rapid and sensitive strategy for on-site colorimetric As(V) detection using a metal-organic framework (MOF) nanozyme, NH-MIL-88(Fe). NH-MIL-88(Fe) featured abundant Fe unsaturated metal centers (UMCs) and ordered porous structure, exhibiting excellent peroxidase-like activity, rapid As(V) adsorption, and high water dispersity. Fe UMCs efficiently catalyzed the oxidization of colorless tetramethylbenzidine (TMB) to blue oxTMB in the presence of HO. As(V) selectively inhibited this activity, reducing Ultraviolet-visible (UV-vis) absorption at 650 nm and fading the solution color. Mechanistically, As(V) interacted with Fe UMCs through As-O-Fe bonds, impeding Fe reduction and Fe catalytic ability, reducing •OH production. Under optimized conditions, As(V) was detected within 15 min, with detection limits of 2.78 μg L via UV-vis and 13.56 μg L via smartphone-assisted platform, covering a linear range of 5.00-600.00 μg L. Additionally, NH-MIL-88(Fe) was incorporated into an agarose hydrogel to create a portable composite for smartphone-based colorimetric analysis As(V).
This study addresses the existing issues of nanozyme-based As(V) sensors, elucidates the molecular mechanism by which As(V) affects NH-MIL-88(Fe) nanozymes activity, and confirms the precision and accuracy of the established method in spiked river samples. Our rapid, sensitive, and facile approach offers a practical and efficient solution for on-site As(V) detection, facilitating swift intelligent risk identification and effective pollution prevention and remediation.
由于砷酸盐(As(V))是一种剧毒污染物,对其浓度进行及时的现场监测对于减轻潜在的环境和健康危害至关重要。传统的As(V)现场检测方法常常面临响应时间长和灵敏度低的局限性。纳米酶是一类具有类似酶催化活性的纳米材料。基于纳米酶的比色检测可以通过将极少量的底物催化转化为大量产物来放大信号并提高检测灵敏度。然而,目前基于纳米酶的As(V)检测方法仍然存在响应时间长以及缺乏便捷检测工具的问题。
我们开发了一种使用金属有机框架(MOF)纳米酶NH-MIL-88(Fe)进行现场比色检测As(V)的快速灵敏策略。NH-MIL-88(Fe)具有丰富的铁不饱和金属中心(UMC)和有序的多孔结构,表现出优异的类过氧化物酶活性、快速的As(V)吸附能力和高水分散性。在过氧化氢存在的情况下,铁不饱和金属中心有效地催化无色的四甲基联苯胺(TMB)氧化为蓝色的氧化型TMB(oxTMB)。As(V)选择性地抑制了这种活性,降低了650nm处的紫外可见(UV-vis)吸收并使溶液颜色变浅。从机制上讲,As(V)通过As-O-Fe键与铁不饱和金属中心相互作用,阻碍铁的还原和铁的催化能力,减少羟基自由基(•OH)的产生。在优化条件下,15分钟内即可检测到As(V),通过紫外可见光谱的检测限为2.78μg/L,通过智能手机辅助平台的检测限为13.56μg/L,线性范围为5.00 - 600.00μg/L。此外,NH-MIL-88(Fe)被掺入琼脂糖水凝胶中,制成用于基于智能手机比色分析As(V)的便携式复合材料。
本研究解决了基于纳米酶的As(V)传感器的现有问题,阐明了As(V)影响NH-MIL-88(Fe)纳米酶活性的分子机制,并证实了所建立方法在加标河流样品中的精密度和准确性。我们快速、灵敏且简便的方法为现场As(V)检测提供了一种实用高效的解决方案,有助于迅速进行智能风险识别以及有效的污染预防和修复。