Bashar Md Habibul, Mannaf Md Abde, Rahman M M, Khatun Mst Tania
Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
Department of Computer Science and Engineering, Stamford University Bangladesh, Dhaka, 1217, Bangladesh.
Sci Rep. 2025 Jan 9;15(1):1416. doi: 10.1038/s41598-024-74323-6.
This research used a modified and extended auxiliary mapping method to examine the optical soliton solutions of the truncated time M-fractional paraxial wave equation. We employed the truncated time M-fractional derivative to eliminate the fractional order in the governing model. The few optical wave examples of the paraxial wave condition can assume an insignificant part in depicting the elements of optical soliton arrangements in optics and photonics for the investigation of different actual cycles, including the engendering of light through optical frameworks like focal points, mirrors, and fiber optics. We identified the solution using a few free parameters regarding hyperbolic function form. We discovered periodic wave, bright and dark kink wave, bell wave, and singular soliton solution for the numerical values of the free parameters. To explain the behavior of various solutions, we have spoken the obtained solutions graphically for a physical explanation using MATLAB. The strategy introduced is fundamental and robust as a smart soliton solution for nonlinear partial differential equations, and it may play a crucial role in nonlinear optics, fiber optics, and communication systems.
本研究采用一种改进和扩展的辅助映射方法来研究截断时间M分数阶傍轴波动方程的光学孤子解。我们采用截断时间M分数阶导数来消除控制模型中的分数阶。傍轴波动条件下的少数光波示例在描述光学和光子学中光学孤子排列的元素以研究不同实际过程(包括光通过诸如透镜、镜子和光纤等光学系统的传播)时可能起微不足道的作用。我们使用关于双曲函数形式的几个自由参数来确定解。对于自由参数的数值,我们发现了周期波、明暗扭结波、钟形波和奇异孤子解。为了解释各种解的行为,我们使用MATLAB以图形方式给出了所得解,以便进行物理解释。所介绍的策略作为非线性偏微分方程的智能孤子解是基本且稳健的,并且它可能在非线性光学、光纤光学和通信系统中发挥关键作用。