Pareek Alka, Katerski Atanas, Kriisa Merike, Spalatu Nicolae, Krunks Malle, Acik Ilona Oja
Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.
Sci Rep. 2025 Jan 9;15(1):1468. doi: 10.1038/s41598-025-85676-x.
NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell. NiO nanoparticles, deposited from nickel(II)nitrate hexahydrate (precursor solution concentrations of 0.2 M to 1.2 M), were thermally treated by two steps at 90 °C for 6 h and 270 °C for 3 h. Nanoparticles with crystallite sizes of 6-9 nm had band gaps (Eg) of ca. 3.65-3.70 eV. Using 1.2 M concentration yielded the largest crystallites (9 nm), lowest Eg (3.65 eV) while retaining the most precursor residues. The highest power conversion efficiency (2.68%) was achieved with NiO from a 0.5 M precursor, a 60% improvement over HTM-free cells. The effect of precursor solution concentration on the solar cell parameters (efficiency, fill factor, open circuit voltage and short circuit current) are discussed. Present work paves a path toward stable, efficient, and cost-effective all-inorganic SbS solar cells using NiO HTM instead of organic counterparts.
氧化镍(NiO)是一种宽带隙空穴传输材料(HTM),因其光学透明性、化学稳定性以及与吸收体良好的能带匹配,在光伏领域受到关注。本研究通过简单的化学沉淀法,在半透明硫化锑(SbS)太阳能电池中使用基于氧化镍纳米颗粒的空穴传输材料。我们通过改变前驱体溶液浓度来优化氧化镍层,并研究其对光学和结构性能、纳米颗粒组成以及对半透明硫化锑太阳能电池性能的后续影响。由六水合硝酸镍(前驱体溶液浓度为0.2 M至1.2 M)沉积的氧化镍纳米颗粒,经过两步热处理,第一步在90°C下处理6小时,第二步在270°C下处理3小时。微晶尺寸为6 - 9纳米的纳米颗粒的带隙(Eg)约为3.65 - 3.70电子伏特。使用1.2 M的浓度得到了最大的微晶(9纳米)、最低的带隙(3.65电子伏特),同时保留了最多的前驱体残余物。使用0.5 M前驱体制备的氧化镍实现了最高的功率转换效率(2.68%),相较于无空穴传输材料的电池提高了60%。讨论了前驱体溶液浓度对太阳能电池参数(效率、填充因子、开路电压和短路电流)的影响。目前的工作为使用氧化镍空穴传输材料而非有机材料制备稳定、高效且经济高效的全无机硫化锑太阳能电池铺平了道路。