Suppr超能文献

躯干运动在基于可穿戴设备的婴儿自发运动分析中的重要性。

The importance of trunk motion in wearable based infant spontaneous movement analysis.

作者信息

Marín-Palma María, Rojas-Sepulveda Ignacia, Becerra-Caroca Jessica, Carrasco-Plaza José, Zepeda Ramiro, Burgos Pablo Ignacio

机构信息

Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Independencia 1027, Independencia, 8380453, Chile.

Neurorehabilitation and Motor Control Lab, Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Independencia 1027, Independencia, 8380453, Chile.

出版信息

Sci Rep. 2025 Jan 9;15(1):1419. doi: 10.1038/s41598-025-85621-y.

Abstract

The characteristics of spontaneous movements in infants are essential for the early detection of neurological pathologies, with the Prechtl method being a widely recognized approach. While the Prechtl method is effective in predicting motor risks, its reliance on the evaluator's expertise limits its scalability, particularly in low-income areas. In such contexts, the use of inertial sensors combined with automated analysis presents a promising accessible alternative; however, more research is necessary to get results comparable to those of the Precht method. This research aims to determine the more important metrics of trunk and limbs to assess spontaneous movement in healthy infants during the first semester of life as the basis of a sensor-based alternative. It was a cross-sectional study with 116 separate subjects divided into 3 groups: 0 M Group (N = 43), 3 M Group (N = 44), and 6 M (N = 29). Participants' movements were recorded using 6 wireless inertial sensors (4 limbs, thorax, and pelvis). Parameters from the acceleration signal were estimated in relation to velocity, cross-correlation, kurtosis, skewness, area, and periodicity. The different stages (0 M,3 M, and 6 M) have different profiles of accelerometric parameters. Trunk and limb parameters can differentiate between 0 of 3 months (13/25 trunk and 17/36 limb parameters) and between 0 and 6 months (10/25 trunk and 20/36 limb). Mainly, trunk parameters can differentiate between 3 and 6 months (9/25 trunk vs. 3/36 limb). Additionally, only 2 trunk parameters (kurtosis and periodicity) can differentiate the 3 stages. Wearable devices can effectively detect significant differences in spontaneous movements during the first six months of life, particularly trunk-related data. The extremities could be insufficient to distinguish movements between 3 and 6 months. On the other hand, two key parameters-kurtosis of thorax velocity and periodicity of trunk velocity-successfully differentiate between the three age groups analyzed.

摘要

婴儿自发运动的特征对于早期发现神经病理学至关重要,普雷茨尔方法是一种被广泛认可的方法。虽然普雷茨尔方法在预测运动风险方面有效,但其对评估者专业知识的依赖限制了其可扩展性,特别是在低收入地区。在这种情况下,使用惯性传感器结合自动分析提供了一种有前景的可及替代方案;然而,需要更多研究以获得与普雷茨尔方法可比的结果。本研究旨在确定在健康婴儿出生后第一学期评估自发运动时,躯干和四肢更重要的指标,作为基于传感器的替代方法的基础。这是一项横断面研究,有116名独立受试者,分为3组:0月龄组(N = 43)、3月龄组(N = 44)和6月龄组(N = 29)。使用6个无线惯性传感器(4个肢体、胸部和骨盆)记录参与者的运动。根据速度、互相关、峰度、偏度、面积和周期性估计加速度信号的参数。不同阶段(0月龄、3月龄和6月龄)具有不同的加速度参数特征。躯干和肢体参数可以区分0至3个月(躯干参数13/25,肢体参数17/36)以及0至6个月(躯干参数10/25,肢体参数20/)。主要是,躯干参数可以区分3至6个月(躯干参数9/25,肢体参数3/36)。此外,只有2个躯干参数(峰度和周期性)可以区分这3个阶段。可穿戴设备可以有效检测出生后头六个月自发运动的显著差异,特别是与躯干相关的数据。四肢可能不足以区分3至6个月的运动。另一方面,两个关键参数——胸部速度的峰度和躯干速度的周期性——成功区分了所分析的三个年龄组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8338/11717918/ab073a5a62cb/41598_2025_85621_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验