Suppr超能文献

计算机视觉自动评估婴儿神经运动风险。

Computer Vision to Automatically Assess Infant Neuromotor Risk.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2431-2442. doi: 10.1109/TNSRE.2020.3029121. Epub 2020 Nov 6.

Abstract

An infant's risk of developing neuromotor impairment is primarily assessed through visual examination by specialized clinicians. Therefore, many infants at risk for impairment go undetected, particularly in under-resourced environments. There is thus a need to develop automated, clinical assessments based on quantitative measures from widely-available sources, such as videos recorded on a mobile device. Here, we automatically extract body poses and movement kinematics from the videos of at-risk infants (N = 19). For each infant, we calculate how much they deviate from a group of healthy infants (N = 85 online videos) using a Naïve Gaussian Bayesian Surprise metric. After pre-registering our Bayesian Surprise calculations, we find that infants who are at high risk for impairments deviate considerably from the healthy group. Our simple method, provided as an open-source toolkit, thus shows promise as the basis for an automated and low-cost assessment of risk based on video recordings.

摘要

婴儿出现神经运动障碍的风险主要通过专业临床医生的视觉检查来评估。因此,许多有发育障碍风险的婴儿未被发现,特别是在资源匮乏的环境中。因此,需要开发基于广泛可用资源(例如移动设备上录制的视频)的定量指标的自动临床评估。在这里,我们从高危婴儿的视频中自动提取身体姿势和运动运动学(N = 19)。对于每个婴儿,我们使用天真高斯贝叶斯惊喜度量来计算他们与一组健康婴儿(N = 85 个在线视频)的差异。在预先注册我们的贝叶斯惊喜计算后,我们发现有发育障碍高风险的婴儿与健康组有很大的差异。我们提供的简单方法作为开源工具包,因此有望成为基于视频记录的自动和低成本风险评估的基础。

相似文献

1
Computer Vision to Automatically Assess Infant Neuromotor Risk.计算机视觉自动评估婴儿神经运动风险。
IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2431-2442. doi: 10.1109/TNSRE.2020.3029121. Epub 2020 Nov 6.
5
Using computer-based video analysis in the study of fidgety movements.在烦躁不安动作研究中使用基于计算机的视频分析。
Early Hum Dev. 2009 Sep;85(9):541-7. doi: 10.1016/j.earlhumdev.2009.05.003. Epub 2009 May 22.
9
A markerless pipeline to analyze spontaneous movements of preterm infants.一种用于分析早产儿自发性运动的无标记流水线。
Comput Methods Programs Biomed. 2022 Nov;226:107119. doi: 10.1016/j.cmpb.2022.107119. Epub 2022 Sep 13.

引用本文的文献

本文引用的文献

2
OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields.OpenPose:基于部件亲和力字段的实时多人 2D 姿态估计。
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):172-186. doi: 10.1109/TPAMI.2019.2929257. Epub 2020 Dec 4.
4
Behavioral tracking gets real.行为追踪变得真实。
Nat Neurosci. 2018 Sep;21(9):1146-1147. doi: 10.1038/s41593-018-0215-0.
5
Stereo 3D tracking of infants in natural play conditions.自然游戏条件下婴儿的立体3D跟踪。
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:841-846. doi: 10.1109/ICORR.2017.8009353.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验