Suppr超能文献

用于多模态事件数据学习的基于电阻式存储器的零样本液态机器。

Resistive memory-based zero-shot liquid state machine for multimodal event data learning.

作者信息

Lin Ning, Wang Shaocong, Li Yi, Wang Bo, Shi Shuhui, He Yangu, Zhang Woyu, Yu Yifei, Zhang Yue, Zhang Xinyuan, Wong Kwunhang, Wang Songqi, Chen Xiaoming, Jiang Hao, Zhang Xumeng, Lin Peng, Xu Xiaoxin, Qi Xiaojuan, Wang Zhongrui, Shang Dashan, Liu Qi, Liu Ming

机构信息

Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China.

Key Lab of Fabrication Technologies for Integrated Circuits and Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Comput Sci. 2025 Jan;5(1):37-47. doi: 10.1038/s43588-024-00751-z. Epub 2025 Jan 9.

Abstract

The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges. Hardware limitations, such as the slowdown of Moore's law and Von Neumann bottleneck, hinder the efficiency of digital computers. In addition, SNNs are characterized by their software training complexities. Here, to this end, we propose a hardware-software co-design on a 40 nm 256 kB in-memory computing macro that physically integrates a fixed and random liquid state machine SNN encoder with trainable artificial neural network projections. We showcase the zero-shot learning of multimodal events on the N-MNIST and N-TIDIGITS datasets, including visual and audio data association, as well as neural and visual data alignment for brain-machine interfaces. Our co-design achieves classification accuracy comparable to fully optimized software models, resulting in a 152.83- and 393.07-fold reduction in training costs compared with state-of-the-art spiking recurrent neural network-based contrastive learning and prototypical networks, and a 23.34- and 160-fold improvement in energy efficiency compared with cutting-edge digital hardware, respectively. These proof-of-principle prototypes demonstrate zero-shot multimodal events learning capability for emerging efficient and compact neuromorphic hardware.

摘要

人类大脑是一个复杂的脉冲神经网络(SNN),能够通过对现有知识进行泛化,以零样本的方式学习多模态信号。值得注意的是,它通过基于事件的信号传播保持最低的功耗。然而,在神经形态硬件中复制人类大脑存在硬件和软件两方面的挑战。硬件限制,如摩尔定律的放缓和冯·诺依曼瓶颈,阻碍了数字计算机的效率。此外,SNN的特点是其软件训练的复杂性。为此,我们在一个40纳米256千字节的内存计算宏上提出了一种硬件-软件协同设计,该宏将固定和随机液态机器SNN编码器与可训练的人工神经网络投影进行了物理集成。我们展示了在N-MNIST和N-TIDIGITS数据集上对多模态事件的零样本学习,包括视觉和音频数据关联,以及用于脑机接口的神经和视觉数据对齐。我们的协同设计实现了与完全优化的软件模型相当的分类准确率,与基于脉冲递归神经网络的对比学习和原型网络相比,训练成本分别降低了152.83倍和393.07倍,与前沿数字硬件相比,能源效率分别提高了23.34倍和160倍。这些原理验证原型展示了新兴的高效紧凑神经形态硬件的零样本多模态事件学习能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验