Suppr超能文献

MScanFit和StairFit对趾短伸肌和小指展肌运动单位数量的估计

MScanFit and StairFit Motor Unit Number Estimation of the Extensor Digitorum Brevis and Abductor Digiti Minimi Muscles.

作者信息

Zhang Yanhui, Chen Maoqi, Xu Peipei, Xie Qing, Zong Ya, Zhou Ping

机构信息

Department of Rehabilitation Sciences, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China.

School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China.

出版信息

Muscle Nerve. 2025 Mar;71(3):446-449. doi: 10.1002/mus.28341. Epub 2025 Jan 10.

Abstract

INTRODUCTION/AIMS: MScanFit and StairFit are two motor unit number estimation (MUNE) methods derived from a compound muscle action potential (CMAP) scan. This study aims to compare MScanFit and StairFit MUNE values by applying both methods to the same muscles.

METHODS

CMAP scans were recorded from the extensor digitorum brevis (EDB) and abductor digiti minimi (ADM) muscles. MUNE was performed using the MScanFit and the StairFit programs.

RESULTS

Twenty healthy subjects (30.1 ± 6.6 years; 11 males, 9 females) participated in the study. The MScanFit and StairFit MUNE values were 79 ± 35 and 63 ± 20 for the EDB muscle, and 124 ± 33 and 80 ± 20 for the ADM muscle, respectively. The StairFit MUNE was significantly lower than the MScanFit MUNE (p < 0.05 for EDB, p < 0.01 for ADM).

DISCUSSION

The different results for MScanFit and StairFit MUNE are likely due to the different strategies used by the two methods. Serial studies are needed to further compare their performances in tracking motor unit number and size changes.

摘要

引言/目的:MScanFit和StairFit是两种从复合肌肉动作电位(CMAP)扫描中衍生出的运动单位数量估计(MUNE)方法。本研究旨在通过将这两种方法应用于相同肌肉来比较MScanFit和StairFit的MUNE值。

方法

记录来自拇短伸肌(EDB)和小指展肌(ADM)的CMAP扫描。使用MScanFit和StairFit程序进行MUNE。

结果

20名健康受试者(30.1±6.6岁;11名男性,9名女性)参与了研究。EDB肌肉的MScanFit和StairFit MUNE值分别为79±35和63±20,ADM肌肉的分别为124±33和80±20。StairFit MUNE显著低于MScanFit MUNE(EDB,p<0.05;ADM,p<0.01)。

讨论

MScanFit和StairFit MUNE结果不同可能是由于这两种方法使用的策略不同。需要进行系列研究以进一步比较它们在跟踪运动单位数量和大小变化方面的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验