Poudel Tej P, Oyekunle Ifeoluwa P, Deck Michael J, Chen Yudan, Hou Dewen, Ojha Pawan K, Ogbolu Bright O, Huang Chen, Xiong Hui, Hu Yan-Yan
Materials Science and Engineering Program, The Graduate School, Florida State University 2005 Levy Ave. Tallahassee FL 32310 USA
Department of Chemistry and Biochemistry, Florida State University 95 Chieftan Way Tallahassee FL 32306 USA.
Chem Sci. 2025 Jan 8;16(5):2391-2401. doi: 10.1039/d4sc07151d. eCollection 2025 Jan 29.
Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (LiAlClS) using inexpensive precursors one-step mechanochemical milling. The resulting Cl-S mixed-anion sublattice significantly improves the ionic conductivity from 0.008 mS cm for LiAlCl to 0.18 mS cm for LiAlClS at 25 °C. Structural refinement of the high-resolution XRD patterns and Li magic-angle-spinning (MAS) NMR quantitative analysis reveals the formation of tetrahedrally-coordinated, face- and edge-shared LiCl S octahedra that facilitate 3D Li transport. molecular dynamics (AIMD) simulations on LiAlClS support an enhanced 3D network for Li migration with increased diffusivity. All-solid-state battery (ASSB) half-cells using LiAlClS exhibit high-rate and long-term stable cycling performance. This work highlights the potential of LiAlClS as a cost-effective and high-performance SE for ASSBs.
固态电解质(SEs)对于推动下一代可充电电池技术至关重要,但其商业可行性部分受到昂贵前驱体、不可扩展的合成方法或低离子电导率的限制。四卤化铝锂提供了一种经济的选择,但具有高活化能垒,导致锂电导率较低。本研究报告了使用廉价前驱体通过一步机械化学研磨合成锂铝硫卤化物(LiAlClS)。所得的Cl-S混合阴离子亚晶格在25°C时将离子电导率从LiAlCl的0.008 mS cm显著提高到LiAlClS的0.18 mS cm。高分辨率XRD图谱的结构精修和锂魔角旋转(MAS)NMR定量分析表明,形成了四面体配位、面共享和边共享的LiCl-S八面体,促进了三维锂传输。对LiAlClS的分子动力学(AIMD)模拟支持了一个增强的三维锂迁移网络,其扩散率增加。使用LiAlClS的全固态电池(ASSB)半电池表现出高倍率和长期稳定的循环性能。这项工作突出了LiAlClS作为一种具有成本效益和高性能的全固态电池固态电解质的潜力。