Zhang Xiwen, Wang Yang, Zhang Kun, Tao Mingquan, Guo Haodan, Guo Lutong, Song Zhaofei, Wen Jinxu, Yang Yongrui, Hou Yuqing, Song Yanlin
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Angew Chem Int Ed Engl. 2025 Mar 24;64(13):e202423827. doi: 10.1002/anie.202423827. Epub 2025 Jan 10.
Self-assembled monolayers (SAM) as hole transport layers have been widely used in high-efficiency inverted perovskite solar cells (PSCs) exceeded 26 %. However, the poor coverage and non-uniform distribution on the substrate of SAM further restrict the improvement of device performance. Herein, we utilize the mixed SAM strategy via the MeO-2PACz along with perfluorotripropylamine (FC-3283) to improve the SAM coverage, aiming to accelerate the carrier transport, promote the perovskite growth, regulate the surface energy levels and suppress the nonradiative recombination. The champion device with the mixed-SAM achieves an efficiency of 25.70 % (certified efficiency of 25.6 %) with long-term stability (maintained the initial efficiency of 90 % after 1000 h and 180 h under ISOS-L-1 and ISOS-L-2).
自组装单分子层(SAM)作为空穴传输层已被广泛应用于效率超过26%的高效倒置钙钛矿太阳能电池(PSC)中。然而,SAM在基底上覆盖性差且分布不均匀,这进一步限制了器件性能的提升。在此,我们采用混合SAM策略,将甲氧基-2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(MeO-2PACz)与全氟三丙胺(FC-3283)混合,以提高SAM的覆盖率,旨在加速载流子传输、促进钙钛矿生长、调节表面能级并抑制非辐射复合。采用混合SAM的最佳器件实现了25.70%的效率(认证效率为25.6%),并具有长期稳定性(在ISOS-L-1和ISOS-L-2条件下分别经过1000小时和180小时后仍保持初始效率的90%)。