Suppr超能文献

利用后组装螯合分子桥最小化埋入界面能量损失以制备高性能稳定倒置钙钛矿太阳能电池

Minimizing Buried Interface Energy Losses with Post-Assembled Chelating Molecular Bridges for High-Performance and Stable Inverted Perovskite Solar Cells.

作者信息

Yu Bo, Wang Kai, Sun Yapeng, Yu Huangzhong

机构信息

School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510640, China.

出版信息

Adv Mater. 2025 Apr;37(14):e2500708. doi: 10.1002/adma.202500708. Epub 2025 Mar 3.

Abstract

Self-assembled monolayers (SAMs) as hole-collecting materials have made remarkable progress in inverted perovskite solar cells (PSCs). However, the incomplete coverage of SAMs and the non-intimate interface contact between perovskite/SAMs usually cause inferior interface characteristics and significant energy losses at the heterojunction interface. Herein, a post-assembled chelating molecular bridge strategy using 5-(9H-carbazol-9-yl)isophthalicacid (CB-PA) is developed to modify the perovskite/SAMs buried interface. It is found that CB-PA can be chemically coupled with MeO-2PACz through π-π stacking between carbazole groups, and chelate with perovskite by forming double C═O···Pb bonds, thus constructing a bridge-connected interface to promote carrier extraction. Simultaneously, the post-assembled CB-PA can fill the voids of MeO-2PACz to form dense hybrid SAMs, resulting in uniform surface potential and improved interface contact. Moreover, CB-PA treatment also tends to induce the oriented crystallization of perovskite films, passivate interface defects, and release lattice stress at the buried interface. Consequently, the CB-PA-based inverted PSCs achieve a champion efficiency of 25.27% with superior operational stability, retaining ≈94% of their initial efficiency after maximum power point (MPP) tracking (65 °C) for 1000 h with ISOS-L-2I protocol. This work provides an innovative strategy to address the buried interface challenges for high-performance inverted PSCs.

摘要

自组装单分子层(SAMs)作为空穴收集材料在倒置钙钛矿太阳能电池(PSC)中取得了显著进展。然而,SAMs的不完全覆盖以及钙钛矿/SAMs之间不紧密的界面接触通常会导致较差的界面特性以及异质结界面处的显著能量损失。在此,开发了一种使用5-(9H-咔唑-9-基)间苯二甲酸(CB-PA)的后组装螯合分子桥策略来修饰钙钛矿/SAMs的掩埋界面。研究发现,CB-PA可通过咔唑基团之间的π-π堆积与MeO-2PACz化学偶联,并通过形成双C═O···Pb键与钙钛矿螯合,从而构建桥连界面以促进载流子提取。同时,后组装的CB-PA可以填充MeO-2PACz的空隙以形成致密的混合SAMs,从而产生均匀的表面电位并改善界面接触。此外,CB-PA处理还倾向于诱导钙钛矿薄膜的取向结晶,钝化界面缺陷,并释放掩埋界面处的晶格应力。因此,基于CB-PA的倒置PSC实现了25.27%的最高效率以及优异的运行稳定性,按照ISOS-L-2I协议在最大功率点(MPP)跟踪(65°C)1000小时后仍保持约94%的初始效率。这项工作为解决高性能倒置PSC的掩埋界面挑战提供了一种创新策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验