Suppr超能文献

人工智能助力被忽视疾病的药物研发:加速发展中世界的公共卫生解决方案

AI-powered drug discovery for neglected diseases: accelerating public health solutions in the developing world.

作者信息

Nishan M D Nahid Hassan

出版信息

J Glob Health. 2025 Jan 10;15:03002. doi: 10.7189/jogh.15.03002.

Abstract

The emergence of artificial intelligence (AI) in drug discovery represents a transformative development in addressing neglected diseases, particularly in the context of the developing world. Neglected diseases, often overlooked by traditional pharmaceutical research due to limited commercial profitability, pose significant public health challenges in low- and middle-income countries. AI-powered drug discovery offers a promising solution by accelerating the identification of potential drug candidates, optimising the drug development process, and reducing the time and cost associated with bringing new treatments to market. However, while AI shows promise, many of its applications are still in their early stages and require human validation to ensure the accuracy and reliability of predictions. Additionally, AI models are limited by the availability of high-quality data, which is often sparse in regions where neglected diseases are most prevalent. This viewpoint explores the application of AI in drug discovery for neglected diseases, examining its current impact, related ethical considerations, and the broader implications for public health in the developing world. It also highlights the challenges and opportunities presented by AI in this context, emphasising the need for ongoing research, ethical oversight, and collaboration between public health stakeholders to fully realise its potential in transforming global health outcomes.

摘要

人工智能(AI)在药物研发中的出现,代表了在应对被忽视疾病方面的一项变革性发展,尤其是在发展中世界的背景下。被忽视疾病往往因商业盈利有限而被传统制药研究忽视,在低收入和中等收入国家构成了重大的公共卫生挑战。人工智能驱动的药物研发通过加速潜在药物候选物的识别、优化药物开发过程以及减少将新疗法推向市场的时间和成本,提供了一个有前景的解决方案。然而,尽管人工智能显示出前景,但其许多应用仍处于早期阶段,需要人工验证以确保预测的准确性和可靠性。此外,人工智能模型受到高质量数据可用性的限制,而在被忽视疾病最为普遍的地区,高质量数据往往很稀少。本观点探讨了人工智能在被忽视疾病药物研发中的应用,审视其当前影响、相关伦理考量以及对发展中世界公共卫生的更广泛影响。它还强调了在这种背景下人工智能带来的挑战和机遇,强调需要持续研究、伦理监督以及公共卫生利益相关者之间的合作,以充分实现其在改变全球健康状况方面的潜力。

相似文献

5
Artificial intelligence in hospital infection prevention: an integrative review.医院感染预防中的人工智能:一项综合综述。
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.
10
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.人工智能将彻底改变炎症性肠病临床试验:全面综述。
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.

本文引用的文献

2
A nested model for AI design and validation.一种用于人工智能设计与验证的嵌套模型。
iScience. 2024 Jul 30;27(9):110603. doi: 10.1016/j.isci.2024.110603. eCollection 2024 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验