Haas Ann, Martino Steven C, Haviland Amelia M, Beckett Megan K, Dembosky Jacob W, Binion Joy, Hill Torrey, Elliott Marc N
RAND, Economics, Sociology, and Statistics, Pittsburgh, PA.
RAND, Behavioral and Policy Sciences, Pittsburgh, PA.
Med Care. 2025 Feb 1;63(2):106-110. doi: 10.1097/MLR.0000000000002090. Epub 2024 Nov 12.
Medicare Bayesian Improved Surname and Geocoding (MBISG), which augments an imperfect race-and-ethnicity administrative variable to estimate probabilities that people would self-identify as being in each of 6 mutually exclusive racial-and-ethnic groups, performs very well for Asian American and Native Hawaiian/Pacific Islander (AA&NHPI), Black, Hispanic, and White race-and-ethnicity, somewhat less well for American Indian/Alaska Native (AI/AN), and much less well for Multiracial race-and-ethnicity.
To assess whether temporal inconsistency of self-reported race-and-ethnicity might limit improvements in approaches like MBISG.
Using the Medicare Health Outcomes Survey (HOS) baseline (2013-2018) and 2-year follow-up data (2015-2020), we evaluate the consistency of self-reported race-and-ethnicity coded 2 ways: the 6 mutually exclusive MBISG categories and individual endorsements of each racial-and-ethnic group. We compare the consistency of self-reported race-and-ethnicity (HOS) to the accuracy of MBISG (using 2021 Medicare Consumer Assessment of Healthcare Providers and Systems data).
Concordance (C-statistic) of HOS baseline and follow-up self-reported race-and-ethnicity was 0.95-0.97 for AA&NHPI, Black, Hispanic, and White, 0.83 for AI/AN, and 0.72 for Multiracial using mutually exclusive categories (weighted concordance=0.956). Concordance of MBISG with self-report followed a similar pattern and had similar values, with somewhat lower AI/AN and Multiracial values. The concordance of individual endorsements over time was somewhat higher than for classification (weighted concordance=0.975).
The concordance of MBISG with self-reported race-and-ethnicity appears to be limited by the consistency of self-report for some racial-and-ethnic groups when employing the 6-mutually-exclusive category approach. The use of individual endorsements can improve the consistency of self-reported data. Reconfiguring algorithms such as MBISG in this form could improve its overall performance.
医疗保险贝叶斯改进姓氏和地理编码(MBISG)通过增强一个不完善的种族和族裔行政变量来估计人们自我认定属于6个相互排斥的种族和族裔群体中每一个群体的概率,在亚裔美国人、夏威夷原住民/太平洋岛民(AA&NHPI)、黑人、西班牙裔和白人种族和族裔方面表现非常出色,在美洲印第安人/阿拉斯加原住民(AI/AN)方面表现稍差,在多种族种族和族裔方面表现则差得多。
评估自我报告的种族和族裔的时间不一致性是否可能限制像MBISG这样的方法的改进。
利用医疗保险健康结果调查(HOS)基线(2013 - 2018年)和2年随访数据(2015 - 2020年),我们评估以两种方式编码的自我报告的种族和族裔的一致性:6个相互排斥的MBISG类别以及对每个种族和族裔群体的个人认可。我们将自我报告的种族和族裔(HOS)的一致性与MBISG的准确性(使用2021年医疗保险医疗服务提供者和系统消费者评估数据)进行比较。
使用相互排斥的类别时,HOS基线和随访自我报告的种族和族裔的一致性(C统计量)对于AA&NHPI、黑人、西班牙裔和白人是0.95 - 0.97,对于AI/AN是0.83,对于多种族是0.72(加权一致性 = 0.956)。MBISG与自我报告的一致性遵循类似模式且具有相似值,AI/AN和多种族的值略低。随着时间推移,个人认可的一致性略高于分类的一致性(加权一致性 = 0.975)。
当采用6个相互排斥的类别方法时,MBISG与自我报告的种族和族裔的一致性似乎受到某些种族和族裔群体自我报告一致性的限制。使用个人认可可以提高自我报告数据的一致性。以这种形式重新配置像MBISG这样的算法可以提高其整体性能。