Li Quan-Yao, Meng Huan-Nan, Yao Li-Qiu, Liu Hui, Tan He-Xin, Lin Dan, Shi Jun
Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University of Medicine, Shanghai, China.
Department of oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Medicine (Baltimore). 2025 Jan 10;104(2):e41085. doi: 10.1097/MD.0000000000041085.
Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases. Cytoscape 3.7.1 software was used to construct the active ingredient-target visualization network of Spatholobi Caulis, and the common target network of Spatholobi Caulis and HFSR. And through the BisoGenet plug-in in Cytoscape, PPI network topology analysis was performed. The Metescape database and online mapping tool platform were used for Gene Ontology (GO) function and Kyoto Encyclopedia of Genes Genomes (KEGG) pathway enrichment analysis to identify the key pathways of Spatholobi Caulis. Finally, Autodock Vina software and PyMol 2.5 software were used for molecular docking verification. There were 24 active components of Spatholobi Caulis and 244 target genes, 1635 disease-related target genes, 51 common target genes of Spatholobi Caulis and Hand-foot skin reaction, and key targets included NTRK1, epidermal growth factor receptor (EGFR), APP, TP53, HSP90AB1, HSP90AA, CUL3, etc. GO functional analysis involved a total of 66 molecular functions, 39 cellular components, and 817 biological processes. KEGG pathway analysis found 154 related signaling pathways, mainly enriched in Pathways in cancer, Human cytomegalovirus infection, Kaposi arcoma-associated herpesvirus infection, panic cancer, EGFR tyrosine kinase inhibitor resistance, P13K-Akt signaling pathway, Proteoglycans in cancer, HIF-1 signaling pathway and Ras signaling pathway, etc. Molecular docking results showed that luteolin, the active component of Spatholobi Caulis, had a high affinity with EGFR. Medicagol, the active components of Spatholobi Caulis, is proved in the Hand-foot skin reaction induced by lung cancer targeted therapy by regulating multiple signaling pathways through EGFR. It is confirmed that the treatment of Hand-foot skin reaction has the characteristics of multi-component, multi-target and multi-pathway regulation.
基于网络药理学和分子对接方法,本研究探索了其活性成分,并证实了其针对肿瘤靶向药物引起的手足皮肤反应的潜在作用机制。利用中药系统药理学数据库和分析平台以及UniProt数据库获取了鸡血藤的活性成分和靶蛋白。借助人类基因数据库、在线人类孟德尔遗传数据库(OMIM)、DisGeNET和DrugBank数据库获取了所有与手足皮肤反应(HFSR)相关的靶点。使用Cytoscape 3.7.1软件构建了鸡血藤活性成分-靶点可视化网络以及鸡血藤与HFSR的共同靶点网络。并通过Cytoscape中的BisoGenet插件进行蛋白质-蛋白质相互作用(PPI)网络拓扑分析。利用Metescape数据库和在线映射工具平台进行基因本体(GO)功能和京都基因与基因组百科全书(KEGG)通路富集分析,以确定鸡血藤的关键通路。最后,使用Autodock Vina软件和PyMol 2.5软件进行分子对接验证。鸡血藤有24种活性成分和244个靶基因,1635个疾病相关靶基因,鸡血藤与手足皮肤反应的共同靶基因有51个,关键靶点包括神经营养酪氨酸激酶受体1(NTRK1)、表皮生长因子受体(EGFR)、淀粉样前体蛋白(APP)、肿瘤蛋白p53(TP53)、热休克蛋白90β(HSP90AB1)、热休克蛋白90α(HSP90AA)、Cullin 3(CUL3)等。GO功能分析共涉及66个分子功能、39个细胞成分和817个生物学过程。KEGG通路分析发现154条相关信号通路,主要富集在癌症通路、人巨细胞病毒感染、卡波西肉瘤相关疱疹病毒感染、泛癌、EGFR酪氨酸激酶抑制剂耐药、磷脂酰肌醇-3激酶-蛋白激酶B(PI3K-Akt)信号通路、癌症中的蛋白聚糖、缺氧诱导因子-1(HIF-1)信号通路和Ras信号通路等。分子对接结果表明,鸡血藤的活性成分木犀草素与EGFR具有高亲和力。鸡血藤的活性成分紫苜蓿酚通过EGFR调节多条信号通路,在肺癌靶向治疗引起的手足皮肤反应中得到证实。证实了其对手足皮肤反应的治疗具有多成分、多靶点、多通路调节的特点。