Jaworski David, Hundsdorfer Lara, Bastounis Effie, Constantinou Iordania
Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany.
Adv Sci (Weinh). 2025 Mar;12(9):e2408853. doi: 10.1002/advs.202408853. Epub 2025 Jan 10.
Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging. Using StretchView, long-term image acquisition of cells in the relaxed and stretched states is shown for the first time (experimental time of 12 h) without the need for human intervention. Homogeneous and stable strain fields are demonstrated for 18 h of cyclic stretching, highlighting the platform's versatility and robustness. As proof-of-principle, the effect of stretching on cell kinematics and spatiotemporal localization of the cell-cell adhesion protein E-cadherin is examined for MDCK cells in monolayer. First evidence of a monotonic increase in junctional E-cadherin localization upon exposure to stretch is presented using live-cell imaging data acquired during cyclic stretching, suggestive of an increase in barrier integrity of the monolayer. These findings highlight the potential of StretchView in providing insights into cell mechanobiology and beyond.
在组织培养中加入细胞的机械拉伸对于模拟(病理)生理条件以及理解细胞的力学生物学反应至关重要,这在组织工程和再生医学等领域可能具有重大意义。尽管人们对此的兴趣日益浓厚,但大多数现有的细胞拉伸装置都与自动活细胞成像不兼容,而自动活细胞成像对于表征各种重要细胞过程动态变化是必不可少的。在这项工作中,展示了StretchView,这是一个与自动、时间分辨活细胞成像兼容的多轴细胞拉伸平台。使用StretchView,首次在无需人工干预的情况下(实验时间为12小时)展示了细胞在松弛和拉伸状态下的长期图像采集。在18小时的循环拉伸中展示了均匀且稳定的应变场,突出了该平台的多功能性和稳健性。作为原理验证,研究了拉伸对单层MDCK细胞的细胞运动学以及细胞间粘附蛋白E-钙粘蛋白的时空定位的影响。利用循环拉伸过程中获取的活细胞成像数据,首次证明了暴露于拉伸时连接性E-钙粘蛋白定位呈单调增加,这表明单层的屏障完整性增加。这些发现突出了StretchView在深入了解细胞力学生物学及其他方面的潜力。