Suppr超能文献

用于从睑板腺造影评估睑板腺结构的卷积神经网络流程的内部验证

Internal validation of a convolutional neural network pipeline for assessing meibomian gland structure from meibography.

作者信息

Scales Charles, Bai John, Murakami David, Young Joshua, Cheng Daniel, Gupta Preeya, Claypool Casey, Holland Edward, Kading David, Hauser Whitney, O'Dell Leslie, Osae Eugene, Blackie Caroline A

机构信息

Johnson & Johnson MedTech (Vision), Irvine, California.

Department of Ophthalmology, New York University School of Medicine, New York, New York.

出版信息

Optom Vis Sci. 2025 Jan 1;102(1):28-36. doi: 10.1097/OPX.0000000000002208. Epub 2025 Jan 13.

Abstract

SIGNIFICANCE

Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.

PURPOSE

This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.

METHODS

A total of 143,476 images were collected from sites across North America. Ophthalmologist and optometrist experts established ground-truth image quality and quantification (i.e., degree of gland absence). Annotated images were allocated into training, validation, and test sets. Convolutional neural networks within Google Cloud VertexAI trained three locally deployable or edge-based predictive models: image quality detection, over-flip detection, and gland absence detection. The algorithms were combined into an algorithmic pipeline onboard a LipiScan Dynamic Meibomian Imager to provide real-time clinical inference for new images. Performance metrics were generated for each algorithm in the pipeline onboard the LipiScan from naive image test sets.

RESULTS

Individual model performance metrics included the following: weighted average precision (image quality detection: 0.81, over-flip detection: 0.88, gland absence detection: 0.84), weighted average recall (image quality detection: 0.80, over-flip detection: 0.87, gland absence detection: 0.80), weighted average F1 score (image quality detection: 0.80, over-flip detection: 0.87, gland absence detection: 0.81), overall accuracy (image quality detection: 0.80, over-flip detection: 0.87, gland absence detection: 0.80), Cohen κ (image quality detection: 0.60, over-flip detection: 0.62, and gland absence detection: 0.71), Kendall τb (image quality detection: 0.61, p<0.001, over-flip detection: 0.63, p<0.001, and gland absence detection: 0.67, p<001), and Matthews coefficient (image quality detection: 0.61, over-flip detection: 0.63, and gland absence detection: 0.62). Area under the precision-recall curve (image quality detection: 0.87 over-flip detection: 0.92, gland absence detection: 0.89) and area under the receiver operating characteristic curve (image quality detection: 0.88, over-flip detection: 0.91 gland absence detection: 0.93) were calculated across a common set of thresholds, ranging from 0 to 1.

CONCLUSIONS

Comparison of predictions from each model to expert panel ground-truth demonstrated strong association and moderate to substantial agreement. The findings and performance metrics show that the pipeline of algorithms provides standardized, real-time inference/prediction of meibomian gland absence.

摘要

意义

睑板腺造影的最佳利用和解读受到阻碍,原因包括眼睑呈现不佳、图像模糊或图像伪影,以及应用临床分级量表的挑战。这些结果使用了迄今为止分析的最大图像数据集,展示了算法的开发,该算法提供了标准化的实时推理,解决了所有这些限制。

目的

本研究旨在开发并验证一种算法流程,以实现睑板腺缺失评估和解读的自动化与标准化。

方法

从北美各地的站点共收集了143,476张图像。眼科医生和验光师专家确定了真实图像质量和量化指标(即腺体缺失程度)。带注释的图像被分配到训练集、验证集和测试集。谷歌云VertexAI中的卷积神经网络训练了三个可本地部署或基于边缘的预测模型:图像质量检测、过度翻转检测和腺体缺失检测。这些算法被整合到LipiScan动态睑板腺成像仪上的算法流程中,为新图像提供实时临床推理。从原始图像测试集中为LipiScan上流程中的每个算法生成性能指标。

结果

各个模型的性能指标如下:加权平均精度(图像质量检测:0.81,过度翻转检测:0.88,腺体缺失检测:0.84)、加权平均召回率(图像质量检测:0.80,过度翻转检测:0.87,腺体缺失检测:0.80)、加权平均F1分数(图像质量检测:0.80,过度翻转检测:0.87,腺体缺失检测:0.81)、总体准确率(图像质量检测:0.80,过度翻转检测:0.87,腺体缺失检测:0.80)、科恩κ系数(图像质量检测:0.60,过度翻转检测:0.62,腺体缺失检测:0.71)、肯德尔τb系数(图像质量检测:0.61,p<0.001,过度翻转检测:0.63,p<0.001,腺体缺失检测:0.67,p<0.001)和马修斯系数(图像质量检测:0.61,过度翻转检测:0.63,腺体缺失检测:0.62)。在0到1的一组通用阈值范围内计算精确率-召回率曲线下面积(图像质量检测:0.87,过度翻转检测:0.92,腺体缺失检测:0.89)和受试者工作特征曲线下面积(图像质量检测:0.88,过度翻转检测:0.91,腺体缺失检测:0.93)。

结论

将每个模型的预测与专家小组的真实情况进行比较,显示出很强的关联性和中度到高度的一致性。研究结果和性能指标表明,该算法流程提供了睑板腺缺失的标准化实时推理/预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0459/11913247/2eb9a881ecce/ovs-102-28-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验