Airale Lorenzo, Giustiniani Alessandro, Ródenas-Alesina Eduard, Lozano-Torres Jordi, Escribano-Escribano Pablo, Vila-Olives Rosa, Tobias-Castillo Pablo Eduardo, Calvo-Barceló Maria, Badia-Molins Clara, Cesareo Marco, Lopez-Gutierrez Pere, Ferreira-Gonzalez Ignacio, Milan Alberto, Rodriguez-Palomares Jose, Guala Andrea
Division of Internal Medicine, Hypertension Unit, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy.
Department of Medicine, Universitat Autonoma de Barcelona, Passeig de la Vall d'Hebron 119-129, 08035 Barcelona, Spain.
Eur Heart J Cardiovasc Imaging. 2025 Mar 27;26(4):630-639. doi: 10.1093/ehjci/jeaf009.
Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Haemodynamic forces (HDFs) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular (CV) risk in non-ischaemic LV cardiomyopathy (NILVC).
A retrospective cohort of 279 patients with NILVC who underwent cardiac CMR at Vall d'Hebron University Hospital (Barcelona) was examined. Unsupervised clustering of longitudinal and transversal HDF curves was performed using dynamic time warping for dissimilarity measurement and the partitioning around medoids algorithm. Outcomes were defined as a composite of CV mortality, heart failure hospitalization, and ventricular arrhythmias. The median age was 65 (57.0; 74.0) years, with 27.2% females and 35.5% showing late gadolinium enhancement (LGE). Unsupervised clustering identified three distinct clusters, delineating risk groups with worsening LA and LV function, indicating a stepwise increase in CV risk profile. Over a median follow-up of 40 months, 60 patients experienced the composite outcome. After adjusting for LGE, LV ejection fraction (EF), and LV size, Clusters 2 and 3 demonstrated a significantly higher risk of adverse events (both P < 0.05) compared with Cluster 1.
Analysing both longitudinal and transversal HDFs throughout the cardiac cycle enables the identification of distinct phenotypes with prognostic value beyond EF and LGE in NILVC patients.
心脏磁共振成像(CMR)对于心肌病的诊断至关重要,是评估心腔容积和组织特征的金标准。血流动力学力(HDFs)分析是一种利用标准电影CMR图像的新方法,可估计左心室(LV)壁与血液之间的能量交换。虽然先前的研究集中在纵向HDF的峰值或平均值上,但本研究旨在探讨HDF曲线的无监督聚类是否能识别临床上有意义的模式,并对非缺血性左心室心肌病(NILVC)患者的心血管(CV)风险进行分层。
对在巴塞罗那Vall d'Hebron大学医院接受心脏CMR检查的279例NILVC患者进行回顾性队列研究。使用动态时间规整进行差异测量,并采用围绕中心点划分算法对纵向和横向HDF曲线进行无监督聚类。结局定义为CV死亡率、心力衰竭住院和室性心律失常的综合指标。中位年龄为65(57.0;74.0)岁,女性占27.2%,35.5%有延迟钆增强(LGE)。无监督聚类识别出三个不同的聚类,描绘出左心房(LA)和左心室功能恶化的风险组,表明CV风险状况呈逐步增加。在中位随访40个月期间,60例患者出现了综合结局。在调整LGE、左心室射血分数(EF)和左心室大小后,与聚类1相比,聚类2和聚类3的不良事件风险显著更高(均P<0.05)。
分析整个心动周期的纵向和横向HDFs能够识别NILVC患者中具有预后价值的不同表型,其预后价值超出了EF和LGE。