Suppr超能文献

提升智利的空气质量预测:将自回归积分滑动平均模型(ARIMA)与人工神经网络模型相结合用于昆特罗和科伊艾克市

Enhancing air quality predictions in Chile: Integrating ARIMA and Artificial Neural Network models for Quintero and Coyhaique cities.

作者信息

Vallejo Fidel, Yánez Diana, Viñán-Guerrero Patricia, Díaz-Robles Luis A, Oyaneder Marcelo, Reinoso Nicolás, Billartello Luna, Espinoza-Pérez Andrea, Espinoza-Pérez Lorena, Pino-Cortés Ernesto

机构信息

Industrial Engineering, National University of Chimborazo, Riobamba, Ecuador.

Particulas Environmental Engineering and Management, Chile.

出版信息

PLoS One. 2025 Jan 10;20(1):e0314278. doi: 10.1371/journal.pone.0314278. eCollection 2025.

Abstract

In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10). A hybrid forecasting strategy was employed, integrating Autoregressive Integrated Moving Average (ARIMA) models with Artificial Neural Networks (ANN), incorporating external covariates such as wind speed and direction to enhance prediction accuracy. Vital monitoring stations, including Quintero, Ventanas, Coyhaique I, and Coyhaique II, played a pivotal role in data collection and model development. Emphasis on industrial and residential zones highlighted the significance of discerning pollutant origins and the influence of wind direction on concentration measurements. Geographical and climatic factors, notably in Coyhaique, revealed a seasonal stagnation effect due to topography and low winter temperatures, contributing to heightened pollution levels. Model performance underwent meticulous evaluation, utilizing metrics such as the Akaike Information Criterion (AIC), Ljung-Box statistical tests, and diverse statistical indicators. The hybrid ARIMA-ANN models demonstrated strong predictive capabilities, boasting an R2 exceeding 0.90. The outcomes underscored the imperative for tailored strategies in air quality management, recognizing the intricate interplay of environmental factors. Additionally, the adaptability and precision of neural network models were highlighted, showcasing the potential of advanced technologies in refining air quality forecasts. The findings reveal that geographical and climatic factors, especially in Coyhaique, contribute to elevated pollution levels due to seasonal stagnation and low winter temperatures. These results underscore the need for tailored air quality management strategies and highlight the potential of advanced modeling techniques to improve future air quality forecasts and deepen the understanding of environmental challenges in Chile.

摘要

在这项对2016年至2021年智利空气质量动态的全面分析中,利用了国家空气质量信息系统(SINCA)及其监测站网络的数据。昆特罗、普春卡维以及科伊艾克是本研究的重点,主要目标是构建二氧化硫(SO2)、细颗粒物(PM2.5)和粗颗粒物(PM10)的预测模型。采用了一种混合预测策略,将自回归积分移动平均(ARIMA)模型与人工神经网络(ANN)相结合,并纳入风速和风向等外部协变量以提高预测准确性。包括昆特罗、文塔纳、科伊艾克一号和科伊艾克二号在内的重要监测站在数据收集和模型开发中发挥了关键作用。对工业区和居民区的关注突出了辨别污染物来源以及风向对浓度测量影响的重要性。地理和气候因素,特别是在科伊艾克,由于地形和冬季低温显示出季节性停滞效应,导致污染水平升高。利用赤池信息准则(AIC)、Ljung-Box统计检验和各种统计指标等对模型性能进行了细致评估。混合ARIMA-ANN模型展现出强大的预测能力,R2超过0.90。结果强调了空气质量管理中制定针对性策略的必要性,认识到环境因素之间复杂的相互作用。此外,突出了神经网络模型的适应性和精确性,展示了先进技术在完善空气质量预测方面的潜力。研究结果表明,地理和气候因素,尤其是在科伊艾克,由于季节性停滞和冬季低温导致污染水平升高。这些结果强调了制定针对性空气质量管理策略的必要性,并突出了先进建模技术在改善未来空气质量预测和加深对智利环境挑战理解方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4af/11723610/09d85ce6ba2c/pone.0314278.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验