Suppr超能文献

使用统计模型预测班加罗尔和德里地区的 PM 浓度。

Forecasting PM concentrations using statistical modeling for Bengaluru and Delhi regions.

机构信息

Aerosol and Nanoparticle Technology Laboratory, Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, India, 400076.

Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.

出版信息

Environ Monit Assess. 2023 Mar 23;195(4):502. doi: 10.1007/s10661-023-11045-8.

Abstract

India is home to some of the most polluted cities on the planet. The worsening air quality in most of the cities has gone to an extent of causing severe impact on human health and life expectancy. An early warning system where people are alerted well before an adverse air quality episode can go a long way in preventing exposure to harmful air conditions. Having such system can also help the government to take better mitigation and preventive measures. Forecasting systems based on machine learning are gaining importance due to their cost-effectiveness and applicability to small towns and villages, where most complex models are not feasible due to resource constraints and limited data availability. This paper presents a study of air quality forecasting by application of statistical models. Three statistical models based on autoregression (AR), moving average (MA), and autoregressive integrated moving average (ARIMA) models were applied to the datasets of PM concentrations of Delhi and Bengaluru, and forecasting was done for 1-day-ahead and 7-day-ahead time frames. All three models forecasted the PM reasonably well for Bengaluru, but the model performance deteriorated for the Delhi region. The AR, MA, and ARIMA models achieved mean absolute percentage error (MAPE) of 10.82%, 7.94%, and 8.17% respectively for forecast of 7 days and MAPE of 7.35%, 5.62%, and 5.87% for 1-day-ahead forecasts for Bengaluru. For the Delhi region, the model gave an MAPE of 27.82%, 24.62%, and 27.32% for the AR, MA, and ARIMA models respectively in the 7-day-ahead forecast, and 24.48%, 23.53%, and 23.72% respectively for 1-day-ahead forecast. The analysis showed that ARIMA model performs better in comparison to the other models but performance varies with varying concentration regimes. Study indicates that other topographical and meteorological parameters need to be incorporated to develop better models and account for the effects of these parameters in the study.

摘要

印度是地球上一些污染最严重的城市的所在地。大多数城市的空气质量恶化程度已经严重影响了人类健康和预期寿命。一个预警系统可以在空气质量恶化事件发生之前很久就提醒人们,这在很大程度上可以防止人们暴露在有害的空气环境中。拥有这样的系统也可以帮助政府采取更好的缓解和预防措施。基于机器学习的预测系统由于其成本效益和适用于小镇和村庄而变得越来越重要,由于资源限制和有限的数据可用性,大多数复杂模型在这些地方不可行。本文通过应用统计模型研究空气质量预测。将基于自回归 (AR)、移动平均 (MA) 和自回归积分移动平均 (ARIMA) 模型的三个统计模型应用于德里和班加罗尔的 PM 浓度数据集,并进行了 1 天和 7 天的预测。所有三个模型都很好地预测了班加罗尔的 PM,但模型在德里地区的性能有所下降。AR、MA 和 ARIMA 模型分别在预测 7 天时达到了 10.82%、7.94%和 8.17%的平均绝对百分比误差 (MAPE),在预测 1 天时达到了 7.35%、5.62%和 5.87%的 MAPE。对于德里地区,AR、MA 和 ARIMA 模型在 7 天的预测中分别给出了 27.82%、24.62%和 27.32%的 MAPE,在 1 天的预测中分别给出了 24.48%、23.53%和 23.72%的 MAPE。分析表明,ARIMA 模型的性能优于其他模型,但性能随浓度变化而变化。研究表明,需要纳入其他地形和气象参数来开发更好的模型,并在研究中考虑这些参数的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验