Gao Ke, Donati Antoine, Ainsworth Julia, Wu Di, Terner Eleanor R, Perry Michael W
Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2416562122. doi: 10.1073/pnas.2416562122. Epub 2024 Dec 30.
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function. We find that flies, mosquitos, butterflies, moths, beetles, wasps, honeybees, and crickets use homologous developmental programs to pattern their retinas. Transcription factor expression can be used to establish homology of different photoreceptor (PR) types across the insects: Prospero (Pros) for R7, Spalt (Sal) for R7+R8, and Defective proventriculus (Dve) for R1-6. Using gene knockout (CRISPR/Cas9) in houseflies, butterflies, and crickets and gene knockdown (RNAi) in beetles, we found that like , EGFR and Sevenless (Sev) signaling pathways are required to recruit motion and color vision PRs, though have a decreased reliance on Sev signaling relative to other insects. Despite morphological and physiological variation across species, retina development passes through a highly conserved phylotypic stage when the unit eyes (ommatidia) are first patterned. This patterning process likely represents an "insect eye ground plan" that is established by an ancient developmental program. We identify three types of developmental patterning modifications (ground plan modification, nonstochastic patterns, and specialized regions) that allow for the diversification of insect eyes. We suggest that developmental divergence after the ground plan is established is responsible for the exceptional diversity observed across insect visual systems.
多种多样的形态和特征使物种能够在不同环境中繁衍生息,但有些结构却相对保持不变。尽管不同物种的视觉能力存在显著差异,但昆虫的复眼很容易辨认。目前尚不清楚远缘昆虫物种是否使用相似或不同的机制来构建它们的眼睛,以及何种类型的基因变化会产生形态和功能的多样性。我们发现,苍蝇、蚊子、蝴蝶、飞蛾、甲虫、黄蜂、蜜蜂和蟋蟀使用同源的发育程序来构建它们的视网膜。转录因子表达可用于确定昆虫中不同光感受器(PR)类型的同源性:Prospero(Pros)用于R7,Spalt(Sal)用于R7+R8,Defective proventriculus(Dve)用于R1-6。通过在家蝇、蝴蝶和蟋蟀中使用基因敲除(CRISPR/Cas9)以及在甲虫中使用基因敲低(RNAi),我们发现,与其他昆虫一样,表皮生长因子受体(EGFR)和无七(Sev)信号通路是招募运动和颜色视觉PR所必需的,不过相对于其他昆虫,对Sev信号的依赖性有所降低。尽管不同物种在形态和生理上存在差异,但视网膜发育在单位眼(小眼)首次形成时会经历一个高度保守的系统发育阶段。这种形成过程可能代表了一种由古老的发育程序建立的“昆虫眼基本模式”。我们识别出三种发育模式修饰(基本模式修饰、非随机模式和特殊区域),它们使得昆虫眼睛具有多样性。我们认为,基本模式建立后的发育差异是昆虫视觉系统中观察到的异常多样性的原因。