Suppr超能文献

用于超快CO₂矿化的湿度驱动碳酸化动力学

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

作者信息

Gao Yining, Tao Yong, Li Gen, Shen Peiliang, Pellenq Roland J-M, Poon Chi Sun

机构信息

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

Research Centre Resources Engineering Towards Carbon Neutrality, The Hong Kong Polytechnic University, Hong Kong 999077, China.

出版信息

Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2418239121. doi: 10.1073/pnas.2418239121. Epub 2024 Dec 30.

Abstract

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals. A self-designed carbonation reactor equipped with an ultrasonic atomizer is used to meticulously control the water content during carbonation experiments. Grand Canonical Monte Carlo simulations reveal that maximum CO uptake occurs at a critical water content where the initiation of capillary condensation significantly enhanced liquid-gas interactions. This phenomenon leads to CO adsorption-driven ultrafast carbonation at an optimal moisture content (0.1 to 0.2 g/g, water mass ratio to total wet mass of the mineral). A higher moisture content decimates the carbonation rate by crippling CO intake within mineral pores. However, at exceptionally high moisture levels, the carbonation reaction sites shift from internal mesopores to the grain surface. This results in surface dissolution-driven ultrafast carbonation, attributed to the monotonically decreasing free energy of dissolution with increasing surface water thickness, as revealed by metadynamics simulations. This study provides a fundamental and unified understanding of the multifaceted role of water in mineral carbonation, paving the way for optimizing ultrafast CO mineralization strategies for global decarbonization efforts.

摘要

一氧化碳矿化是指一氧化碳与矿物质反应形成稳定碳酸盐的过程,它为二氧化碳封存和缓解全球变暖提供了一种可持续的方法。虽然水在调节一氧化碳矿化效率方面的关键作用已得到广泛认可,但对其潜在机制的全面理解仍然难以捉摸。本研究采用实验与原子模拟相结合的方法,以阐明控制含钙矿物质中水分驱动碳酸化动力学的复杂机制。在碳酸化实验过程中,使用配备超声雾化器的自行设计的碳酸化反应器精确控制含水量。巨正则蒙特卡罗模拟表明,在临界含水量处一氧化碳吸收量最大,此时毛细凝聚的开始显著增强了液 - 气相互作用。这种现象导致在最佳含水量(0.1至0.2克/克,水质量与矿物质总湿质量的比值)下由一氧化碳吸附驱动的超快碳酸化。较高的含水量会通过削弱矿物质孔隙内的一氧化碳吸收来降低碳酸化速率。然而,在极高的含水量下,碳酸化反应位点从内部中孔转移到颗粒表面。这导致了由表面溶解驱动的超快碳酸化,元动力学模拟表明,这归因于随着表面水厚度增加溶解自由能单调降低。本研究为水在矿物碳酸化中的多方面作用提供了基础且统一的理解,为优化全球脱碳努力的超快一氧化碳矿化策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de61/11725878/90258ab6c817/pnas.2418239121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验