Suppr超能文献

染色质能够利用特异性有限的因子实现精确且可扩展的基因调控。

Chromatin enables precise and scalable gene regulation with factors of limited specificity.

作者信息

Perkins Mindy Liu, Crocker Justin, Tkačik Gašper

机构信息

Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.

Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.

出版信息

Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2411887121. doi: 10.1073/pnas.2411887121. Epub 2024 Dec 30.

Abstract

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by how much can chromatin reduce regulatory errors on a global scale? We use a theoretical approach to compare two scenarios for gene regulation: one that relies on TF binding to free DNA alone and one that uses a combination of TFs and chromatin-regulating PFs to achieve desired gene expression patterns. We find, first, that chromatin effectively silences groups of genes that should be simultaneously OFF, thereby allowing more accurate graded control of expression for the remaining ON genes. Second, chromatin buffers the deleterious consequences of nontarget binding as the number of OFF genes grows, permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation productively co-opts nontarget TF binding for ON genes in order to establish a "leaky" baseline expression level, which targeted activator or repressor binding subsequently up- or down-modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure for high specificity of regulatory interactions and enables an increase in genome size with minimal impact on global expression error.

摘要

生物物理限制因素制约了转录因子(TFs)靶向调控DNA的特异性。虽然单个非靶向结合事件可能亲和力较低,但此类相互作用的数量众多,可能会因降低基因调控的精度或导致错误的诱导状态而对基因调控构成挑战。染色质可通过使DNA对转录因子在物理上不可及来防止非靶向结合,代价是由先驱因子(PFs)精心编排的耗能重塑过程。在何种条件下以及在多大程度上染色质能在全球范围内减少调控错误呢?我们采用理论方法来比较两种基因调控情景:一种仅依赖转录因子与游离DNA的结合,另一种则结合使用转录因子和染色质调控先驱因子来实现所需的基因表达模式。我们首先发现,染色质能有效沉默那些应同时关闭的基因群,从而使其余开启基因的表达能得到更精确的分级控制。其次,随着关闭基因数量的增加,染色质可缓冲非靶向结合的有害后果,允许调控复杂性大幅扩展。第三,基于染色质的调控有效地利用非靶向转录因子与开启基因的结合,以建立一个“渗漏”的基线表达水平,随后靶向激活因子或抑制因子的结合会对其进行上调或下调调节。因此,在全球范围内,使用染色质既能减轻对调控相互作用高特异性的压力,又能在对全球表达错误影响最小的情况下增加基因组大小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66d8/11725945/e33d0c09a36f/pnas.2411887121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验