Suppr超能文献

tinyHLS:一种新型开源高级综合工具,旨在为人工神经网络推理打造硬件加速器。

tinyHLS: a novel open source high level synthesis tool targeting hardware accelerators for artificial neural network inference.

作者信息

Hoyer Ingo, Utz Alexander, Hoog Antink Christoph, Seidl Karsten

机构信息

Fraunhofer Institute for Microelectronic Circuits and Systems IMS, Duisburg, Germany.

KIS*MED (AI Systems in Medicine), Technical University of Darmstadt, Darmstadt, Germany.

出版信息

Physiol Meas. 2025 Jan 29;13(1). doi: 10.1088/1361-6579/ada8f0.

Abstract

In recent years, wearable devices such as smartwatches and smart patches have revolutionized biosignal acquisition and analysis, particularly for monitoring electrocardiography (ECG). However, the limited power supply of these devices often precludes real-time data analysis on the patch itself.This paper introduces a novel Python package, tinyHLS (High Level Synthesis), designed to address these challenges by converting Python-based AI models into platform-independent hardware description language code accelerators. Specifically designed for convolutional neural networks, tinyHLS seamlessly integrates into the AI developer's workflow in Python TensorFlow Keras. Our methodology leverages a template-based hardware compiler that ensures flexibility, efficiency, and ease of use. In this work, tinyHLS is first-published featuring templates for several layers of neural networks, such as dense, convolution, max and global average pooling. In the first version, rectified linear unit is supported as activation. It targets one-dimensional data, with a particular focus on time series data.The generated accelerators are validated in detecting atrial fibrillation on ECG data, demonstrating significant improvements in processing speed (62-fold) and energy efficiency (4.5-fold). Quality of code and synthesizability are ensured by validating the outputs with commercial ASIC design tools.Importantly, tinyHLS is open-source and does not rely on commercial tools, making it a versatile solution for both academic and commercial applications. The paper also discusses the integration with an open-source RISC-V and potential for future enhancements of tinyHLS, including its application in edge servers and cloud computing. The source code is available on GitHub:https://github.com/Fraunhofer-IMS/tinyHLS.

摘要

近年来,智能手表和智能贴片等可穿戴设备彻底改变了生物信号的采集和分析方式,尤其是在心电图(ECG)监测方面。然而,这些设备有限的电源供应常常阻碍在贴片本身进行实时数据分析。本文介绍了一个新颖的Python包tinyHLS(高级综合),旨在通过将基于Python的人工智能模型转换为与平台无关的硬件描述语言代码加速器来应对这些挑战。tinyHLS专为卷积神经网络设计,可无缝集成到Python TensorFlow Keras中的人工智能开发者工作流程中。我们的方法利用了基于模板的硬件编译器,确保了灵活性、效率和易用性。在这项工作中,首次发布的tinyHLS具有针对神经网络多层的模板,如全连接层、卷积层、最大池化层和全局平均池化层。在第一个版本中,支持整流线性单元作为激活函数。它针对一维数据,特别关注时间序列数据。生成的加速器在检测心电图数据中的房颤方面得到了验证,在处理速度(提高了62倍)和能源效率(提高了4.5倍)方面有显著提升。通过使用商业ASIC设计工具验证输出,确保了代码质量和可合成性。重要的是,tinyHLS是开源的,不依赖商业工具,使其成为学术和商业应用的通用解决方案。本文还讨论了与开源RISC-V的集成以及tinyHLS未来增强的潜力,包括其在边缘服务器和云计算中的应用。源代码可在GitHub上获取:https://github.com/Fraunhofer-IMS/tinyHLS

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验