Suppr超能文献

Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.

作者信息

Fan Hehe, Su Jingyuan, Zhao En, Zheng Yanmei, Chen Zupeng

机构信息

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

出版信息

J Colloid Interface Sci. 2025 Apr 15;684(Pt 1):140-147. doi: 10.1016/j.jcis.2025.01.029. Epub 2025 Jan 7.

Abstract

Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages. However, the harsh reaction conditions, long reaction times, poor yields of liquid hydrogen carriers, and the tendency of peroxidation to carbon dioxide (CO) make the selective CC bond cleavage of glycerol more challenging. Herein, we report the selective CC bond cleavage of glycerol to formic acid and formaldehyde using surface cobalt (Co)-doped titanium dioxide (TiO) under light irradiation and ambient conditions. The optimized system exhibits a high conversion of glycerol (95 %) and the yield of liquid hydrogen carriers reaches 78 % (formic acid, 57 %; formaldehyde, 21 %) in 8 h, effectively preventing their peroxidation to CO. The outstanding photocatalytic performance is mainly attributed to the introduction of Co species and oxygen vacancies that promote the separation of photogenerated charges and holes and provide more adsorption sites for oxygen which are electron acceptors, respectively. In-depth investigations have shown that photogenerated holes and superoxide radicals are the main active species in this reaction. This work presents an effective and promising strategy for the efficient utilization of biomass resources.

摘要

相似文献

1
Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.
J Colloid Interface Sci. 2025 Apr 15;684(Pt 1):140-147. doi: 10.1016/j.jcis.2025.01.029. Epub 2025 Jan 7.
6
Photocatalytic Production of Syngas from Biomass.光催化生物质制合成气。
Acc Chem Res. 2023 May 2;56(9):1057-1069. doi: 10.1021/acs.accounts.3c00039. Epub 2023 Apr 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验