基于MRI图像的混合优化增强型密集连接网络用于自闭症谱系障碍研究

Hybrid optimization enabled DenseNet for autism spectrum disorders using MRI image.

作者信息

Ulaganathan Sakthi, Harshavardhanan Pon, Ganapathi Raju N V, Parthasarathy G

机构信息

Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.

School of Computing Science Engineering and Artificial Intelligence, VIT Bhopal University, Bhopal, Madhya Pradesh, India.

出版信息

Comput Biol Chem. 2025 Apr;115:108335. doi: 10.1016/j.compbiolchem.2024.108335. Epub 2024 Dec 30.

Abstract

Autism spectrum disorder (ASD) is the neuro-developmental disorder caused by various changes in the brain. It affects the life conditions with social interaction and communication. Most of the previous researches used the various techniques for the early detection to reduce the ASD, but it had been occurred several complications such as, time expenses, and low accessibility for diagnosis.This paper aims to develop the JSTO-DenseNetmodel is for the detection of ASD. In this paper, an input autism brainimage is considered as an input applied to image pre-processing phase. In image pre-processing, the clatters are removed utilizing Gaussian filtering and also, Region of Interest (ROI) extraction is carried out. Thereafter, extraction of pivotal region is done based on functional connectivity utilizing proposed Jaya Sewing Training Optimization (JSTO). The JSTO is newly introduced by combining Jaya algorithm and Sewing Training-Based Optimization (STBO). Thus, output-1 is obtained. In feature extraction phase, grey level co-occurrence matrix (GLCM) features like entropy, correlation, energy, homogeneity, inverse difference moment, Angular second moment and texture features namelylocal ternary patterns (LTP), Local Optimal Oriented Pattern (LOOP) and Histogram of Oriented Gradients (HOG) are extracted from the Magnetic Resonance Imaging (MRI). Therefore, output-2 is obtained. From output-1 and output-2, ASD classification is accomplished using DenseNet, which is trained employing same proposed JSTO.The proposed JSTO-DenseNet model achieves the highest accuracy of 94.8 %, True Positive Rate (TPR) of 90 %, True Negative Rate (TNR) of 90.5 %, un-weighted average recall (UAR) of 89.8 % and the lowest False Negative Rate (FNR) of 86.7 %, and False Positive Rate of 82.6 %, when compared with other traditional methods like, Explainable Artificial Intelligence (XAI), Hybrid deep lightweight feature generator, CLAttention, Two stream end-to-end deep learning (DL), Auto-Encoder feature representation, and Fuzzy Inference Gait System-Deep Extreme Adaptive Fuzzy (FIGS-DEAF) based on Abide 1 dataset.

摘要

自闭症谱系障碍(ASD)是一种由大脑各种变化引起的神经发育障碍。它影响着社交互动和沟通方面的生活状况。之前的大多数研究使用了各种早期检测技术来减少ASD的发生,但出现了一些并发症,如时间成本高和诊断的可及性低。本文旨在开发用于检测ASD的JSTO-DenseNet模型。在本文中,将输入的自闭症脑图像作为输入应用于图像预处理阶段。在图像预处理中,利用高斯滤波去除杂波,并且进行感兴趣区域(ROI)提取。此后,基于功能连接性,利用提出的Jaya缝纫训练优化(JSTO)进行关键区域的提取。JSTO是通过结合Jaya算法和基于缝纫训练的优化(STBO)新引入的。由此获得输出1。在特征提取阶段,从磁共振成像(MRI)中提取灰度共生矩阵(GLCM)特征,如熵、相关性、能量、同质性、逆差矩、角二阶矩,以及纹理特征,即局部三元模式(LTP)、局部最优定向模式(LOOP)和定向梯度直方图(HOG)。因此,获得输出2。根据输出1和输出2,使用DenseNet完成ASD分类,DenseNet使用相同的提出的JSTO进行训练。与其他传统方法,如可解释人工智能(XAI)、混合深度轻量级特征生成器、CLAttention、双流端到端深度学习(DL)、自动编码器特征表示以及基于Abide 1数据集的模糊推理步态系统-深度极端自适应模糊(FIGS-DEAF)相比,所提出的JSTO-DenseNet模型实现了94.8%的最高准确率、90%的真阳性率(TPR)、90.5%的真阴性率(TNR)、89.8%的未加权平均召回率(UAR)以及86.7%的最低假阴性率(FNR)和82.6%的假阳性率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索