Nelson Aileena C, Molley Thomas G, Gonzalez Gisselle, Kirkland Natalie J, Holman Alyssa R, Masutani Evan M, Chi Neil C, Engler Adam J
Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA.
Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
J Mol Cell Cardiol. 2025 Mar;200:1-10. doi: 10.1016/j.yjmcc.2025.01.001. Epub 2025 Jan 8.
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization. Analyses of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) harboring either VCL c.659dupA or VCL c.74del7 heterozygous VCL frameshift variants revealed that these VCL mutant hPSC-CMs exhibited heightened contractile strain energy, morphological maladaptation, and sarcomere disarray on stiffened matrix. Mechanosensitive recruitment of costameric talin 2, paxillin, focal adhesion kinase, and α-actinin was significantly reduced in vinculin variant cardiomyocytes. Despite poorly formed costamere complexes and sarcomeres, elevated expression of integrin β1 and cortical actin on stiff substrates may rescue force transmission on stiff substrates, an effect that is recapitulated in WT CMs by ligating integrin receptors and blocking mechanosensation. Together, these data support that heterozygous loss of VCL contributes to adverse cardiomyocyte remodeling by impairing adhesion-mediated force transmission from the costamere to the cytoskeleton. (191 words).
纽蛋白(VCL)是一种关键的衔接蛋白,位于承受力的肌小节旁复合体中,该复合体将肌小节与细胞外基质进行机械连接。当受到外部压力时,纽蛋白移码杂合基因变异可能导致心肌病,但支撑VCL单倍体不足的机械敏感通路仍不清楚。在这里,我们表明,响应细胞外基质硬化,VCL的杂合缺失会破坏力介导的肌小节旁蛋白募集,从而损害心肌细胞收缩力和肌小节组织。对携带VCL c.659dupA或VCL c.74del7杂合VCL移码变异的人多能干细胞衍生心肌细胞(hPSC-CMs)的分析表明,这些VCL突变hPSC-CMs在硬化基质上表现出更高的收缩应变能、形态适应不良和肌小节紊乱。在纽蛋白变异心肌细胞中,肌小节旁的踝蛋白2、桩蛋白、粘着斑激酶和α-辅肌动蛋白的机械敏感募集显著减少。尽管肌小节旁复合体和肌小节形成不良,但在硬底物上整合素β1和皮质肌动蛋白表达升高可能会挽救硬底物上的力传递,通过连接整合素受体和阻断机械感觉,这种效应在野生型心肌细胞中也能重现。总之,这些数据支持VCL的杂合缺失通过损害从肌小节旁到细胞骨架的粘附介导的力传递,导致不良的心肌细胞重塑。 (191字)