Suppr超能文献

一种用于自动量化葡萄叶片绒毛的高通量残差神经网络卷积神经网络方法。

A high-throughput ResNet CNN approach for automated grapevine leaf hair quantification.

作者信息

Malagol Nagarjun, Rao Tanuj, Werner Anna, Töpfer Reinhard, Hausmann Ludger

机构信息

Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany.

出版信息

Sci Rep. 2025 Jan 10;15(1):1590. doi: 10.1038/s41598-025-85336-0.

Abstract

The hairiness of the leaves is an essential morphological feature within the genus Vitis that can serve as a physical barrier. A high leaf hair density present on the abaxial surface of the grapevine leaves influences their wettability by repelling forces, thus preventing pathogen attack such as downy mildew and anthracnose. Moreover, leaf hairs as a favorable habitat may considerably affect the abundance of biological control agents. The unavailability of accurate and efficient objective tools for quantifying leaf hair density makes the study intricate and challenging. Therefore, a validated high-throughput phenotyping tool was developed and established in order to detect and quantify leaf hair using images of single grapevine leaf discs and convolution neural networks (CNN). We trained modified ResNet CNNs with a minimalistic number of images to efficiently classify the area covered by leaf hairs. This approach achieved an overall model prediction accuracy of 95.41%. As final validation, 10,120 input images from a segregating F1 biparental population were used to evaluate the algorithm performance. ResNet CNN-based phenotypic results compared to ground truth data received by two experts revealed a strong correlation with R values of 0.98 and 0.92 and root-mean-square error values of 8.20% and 14.18%, indicating that the model performance is consistent with expert evaluations and outperforms the traditional manual rating. Additional validation between expert vs. non-expert on six varieties showed that non-experts contributed to over- and underestimation of the trait, with an absolute error of 0% to 30% and -5% to -60%, respectively. Furthermore, a panel of 16 novice evaluators produced significant bias on set of varieties. Our results provide clear evidence of the need for an objective and accurate tool to quantify leaf hairiness.

摘要

叶片的多毛是葡萄属植物的一个重要形态特征,可作为一种物理屏障。葡萄叶片背面存在的高叶毛密度通过排斥力影响其润湿性,从而防止霜霉病和炭疽病等病原体的侵袭。此外,叶毛作为一个适宜的栖息地,可能会极大地影响生物防治剂的数量。由于缺乏准确有效的客观工具来量化叶毛密度,使得这项研究复杂且具有挑战性。因此,开发并建立了一种经过验证的高通量表型分析工具,以便使用单个葡萄叶片圆盘的图像和卷积神经网络(CNN)来检测和量化叶毛。我们用最少数量的图像训练了改进的ResNet CNN,以有效地对叶毛覆盖的面积进行分类。这种方法实现了95.41%的总体模型预测准确率。作为最终验证,使用来自分离的F1双亲群体的10120张输入图像来评估算法性能。与两位专家获得的地面真值数据相比,基于ResNet CNN的表型结果显示出很强的相关性,R值分别为0.98和0.92,均方根误差值分别为8.20%和14.18%,这表明模型性能与专家评估一致,并且优于传统的人工评级。专家与非专家在六个品种上的额外验证表明,非专家对该性状的估计存在高估和低估,绝对误差分别为0%至30%和-5%至-60%。此外,一组16名新手评估员对一组品种产生了显著偏差。我们的结果清楚地证明了需要一种客观准确的工具来量化叶片的多毛程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2b/11724064/e5bc93e86051/41598_2025_85336_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验