Loopmans Shauni, Rohlenova Katerina, van Brussel Thomas, Stockmans Ingrid, Moermans Karen, Peredo Nicolas, Carmeliet Peter, Lambrechts Diether, Stegen Steve, Carmeliet Geert
Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium.
Nat Metab. 2025 Jan;7(1):182-195. doi: 10.1038/s42255-024-01187-5. Epub 2025 Jan 10.
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification. Loss of glucose-6-phosphate dehydrogenase in chondrocytes does not affect cell proliferation because reversal of the non-oxidative PPP produces ribose-5-phosphate. However, the decreased NADPH production reduces glutathione recycling, resulting in decreased protection against the reactive oxygen species (ROS) produced during oxidative protein folding. The disturbed proteostasis activates the unfolded protein response and protein degradation. Moreover, the oxidative stress induces ferroptosis, which, together with altered matrix properties, results in a chondrodysplasia phenotype. Collectively, these data show that in hypoxia, the PPP is crucial to produce reducing power that confines ROS generated by oxidative protein folding and thereby controls proteostasis and prevents ferroptosis.
骨延长和骨折修复依赖于在无血管环境中发挥作用的软骨细胞的合成代谢特性。氧气和营养物质的供应有限,这让人质疑生物合成和氧化还原稳态是如何得到保障的。在这里,我们表明通过磷酸戊糖途径(PPP)进行的葡萄糖代谢对于软骨内成骨至关重要。软骨细胞中葡萄糖-6-磷酸脱氢酶的缺失并不影响细胞增殖,因为非氧化PPP的逆转会产生5-磷酸核糖。然而,NADPH产量的降低会减少谷胱甘肽循环,导致对氧化蛋白折叠过程中产生的活性氧(ROS)的保护作用减弱。蛋白质稳态的紊乱会激活未折叠蛋白反应和蛋白质降解。此外,氧化应激会诱导铁死亡,这与基质特性的改变一起导致软骨发育异常表型。总的来说,这些数据表明,在缺氧条件下,PPP对于产生还原力至关重要,这种还原力可以限制氧化蛋白折叠产生的ROS,从而控制蛋白质稳态并防止铁死亡。