Stegen Steve, Loopmans Shauni, Stockmans Ingrid, Moermans Karen, Carmeliet Peter, Carmeliet Geert
Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000, Leuven, Belgium.
Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, 3000, Leuven, Belgium.
Bone Res. 2022 Feb 15;10(1):14. doi: 10.1038/s41413-021-00185-7.
The majority of the mammalian skeleton is formed through endochondral ossification starting from a cartilaginous template. Cartilage cells, or chondrocytes, survive, proliferate and synthesize extracellular matrix in an avascular environment, but the metabolic requirements for these anabolic processes are not fully understood. Here, using metabolomics analysis and genetic in vivo models, we show that maintaining intracellular serine homeostasis is essential for chondrocyte function. De novo serine synthesis through phosphoglycerate dehydrogenase (PHGDH)-mediated glucose metabolism generates nucleotides that are necessary for chondrocyte proliferation and long bone growth. On the other hand, dietary serine is less crucial during endochondral bone formation, as serine-starved chondrocytes compensate by inducing PHGDH-mediated serine synthesis. Mechanistically, this metabolic flexibility requires ATF4, a transcriptional regulator of amino acid metabolism and stress responses. We demonstrate that both serine deprivation and PHGDH inactivation enhance ATF4 signaling to stimulate de novo serine synthesis and serine uptake, respectively, and thereby prevent intracellular serine depletion and chondrocyte dysfunction. A similar metabolic adaptability between serine uptake and de novo synthesis is observed in the cartilage callus during fracture repair. Together, the results of this study reveal a critical role for PHGDH-dependent serine synthesis in maintaining intracellular serine levels under physiological and serine-limited conditions, as adequate serine levels are necessary to support chondrocyte proliferation during endochondral ossification.
大多数哺乳动物的骨骼是通过软骨内成骨从软骨模板开始形成的。软骨细胞,即软骨细胞,在无血管环境中存活、增殖并合成细胞外基质,但这些合成代谢过程的代谢需求尚未完全了解。在这里,我们使用代谢组学分析和体内遗传模型表明,维持细胞内丝氨酸稳态对软骨细胞功能至关重要。通过磷酸甘油酸脱氢酶(PHGDH)介导的葡萄糖代谢进行的从头丝氨酸合成产生软骨细胞增殖和长骨生长所需的核苷酸。另一方面,在软骨内骨形成过程中,饮食中的丝氨酸不太关键,因为丝氨酸饥饿的软骨细胞通过诱导PHGDH介导的丝氨酸合成来补偿。从机制上讲,这种代谢灵活性需要ATF4,一种氨基酸代谢和应激反应的转录调节因子。我们证明,丝氨酸剥夺和PHGDH失活分别增强ATF4信号传导以刺激从头丝氨酸合成和丝氨酸摄取,从而防止细胞内丝氨酸耗竭和软骨细胞功能障碍。在骨折修复过程中的软骨痂中也观察到丝氨酸摄取和从头合成之间类似的代谢适应性。总之,这项研究的结果揭示了PHGDH依赖性丝氨酸合成在生理和丝氨酸受限条件下维持细胞内丝氨酸水平的关键作用,因为足够的丝氨酸水平对于支持软骨内成骨过程中的软骨细胞增殖是必要的。