Tagawa Hiroshi, Fushimi Yasutaka, Fujimoto Koji, Nakajima Satoshi, Okuchi Sachi, Sakata Akihiko, Otani Sayo, Wicaksono Krishna Pandu, Wang Yang, Ikeda Satoshi, Ito Shuichi, Umehana Masaki, Shimotake Akihiro, Kuzuya Akira, Nakamoto Yuji
Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
Department of Advanced Imaging in Medical Magnetic Resonance, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
Jpn J Radiol. 2025 May;43(5):761-769. doi: 10.1007/s11604-024-01728-8. Epub 2025 Jan 11.
Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images from MRI localizers.
Brain MRI examinations including MPRAGE taken at a single institution for investigation of mild cognitive impairment, dementia and epilepsy between January 2020 and December 2022 were included retrospectively. Images taken in 2020 or 2021 were assigned to training and validation datasets, and images from 2022 were used for the test dataset. Using the training and validation set, we determined one model using visual evaluation by radiologists with reference to image quality metrics of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS). The test dataset was evaluated by visual assessment and quality metrics. Voxel-based morphometric analysis was also performed, and we evaluated Dice score and volume differences between generated and original images of major structures were calculated as absolute symmetrized percent change.
Training, validation, and test datasets comprised 340 patients (mean age, 56.1 ± 24.4 years; 195 women), 36 patients (67.3 ± 18.3 years, 20 women), and 193 patients (59.5 ± 24.4 years; 111 women), respectively. The test dataset showed: PSNR, 35.4 ± 4.91; SSIM, 0.871 ± 0.058; and LPIPS 0.045 ± 0.017. No overfitting was observed. Dice scores for the segmentation of main structures ranged from 0.788 (left amygdala) to 0.926 (left ventricle). Quadratic weighted Cohen kappa values of visual score for medial temporal lobe between original and generated images were 0.80-0.88.
Images generated using our DL-based model can be used for post-processing and visual evaluation of medial temporal lobe atrophy.
磁化准备快速梯度回波(MPRAGE)是一种有用的三维(3D)T1加权序列,但在常规脑部检查中并非首选。我们假设,通过深度学习(DL)将3D MRI定位器(自动对齐头部)图像转换为类似MPRAGE的图像,将有助于痴呆和神经退行性疾病的诊断和研究。我们旨在建立并评估一种基于DL的模型,用于从MRI定位器生成类似MPRAGE的图像。
回顾性纳入2020年1月至2022年12月在单一机构进行的包括MPRAGE在内的脑部MRI检查,这些检查用于调查轻度认知障碍、痴呆和癫痫。2020年或2021年拍摄的图像被分配到训练和验证数据集,2022年的图像用于测试数据集。使用训练集和验证集,我们参考峰值信噪比(PSNR)、结构相似性指数测量(SSIM)和学习感知图像块相似性(LPIPS)等图像质量指标,通过放射科医生的视觉评估确定了一个模型。通过视觉评估和质量指标对测试数据集进行评估。还进行了基于体素的形态计量分析,并计算了生成图像与原始图像之间主要结构的Dice分数和体积差异,以绝对对称百分比变化表示。
训练、验证和测试数据集分别包括340例患者(平均年龄56.1±24.4岁;195名女性)、36例患者(67.3±18.3岁,20名女性)和193例患者(59.5±24.4岁;111名女性)。测试数据集显示:PSNR为35.4±4.91;SSIM为0.871±0.058;LPIPS为0.045±0.017。未观察到过拟合。主要结构分割的Dice分数范围为0.788(左杏仁核)至0.926(左心室)。原始图像与生成图像之间内侧颞叶视觉评分的二次加权科恩kappa值为0.80 - 0.88。
使用我们基于DL的模型生成的图像可用于内侧颞叶萎缩的后处理和视觉评估。