Suppr超能文献

用于预测胃癌微卫星状态的瘤内和瘤周放射组学:一项多中心研究

Intratumoral and peritumoral radiomics for forecasting microsatellite status in gastric cancer: a multicenter study.

作者信息

Xiao Yunzhou, Zhu Jianping, Xie Huanhuan, Wang Zhongchu, Huang Zhaohai, Su Miaoguang

机构信息

Department of Radiology, The People's Hospital of PingYang, Wenzhou Medical University, Wenzhou, 325400, China.

Department of Radiology, Ningbo Yinzhou NO.2 Hospital, Ningbo, 315100, China.

出版信息

BMC Cancer. 2025 Jan 11;25(1):66. doi: 10.1186/s12885-025-13450-3.

Abstract

OBJECTIVE

This investigation attempted to examine the effectiveness of CT-derived peritumoral and intratumoral radiomics in forecasting microsatellite instability (MSI) status preoperatively among gastric cancer (GC) patients.

METHODS

A retrospective analysis was performed on GC patients from February 2019 to December 2023 across three healthcare institutions. 364 patients (including 41 microsatellite instability-high (MSI-H) and 323 microsatellite instability-low/stable (MSI-L/S)) were stratified into a training set (n = 202), an internal validation set (n = 84), and an external validation set (n = 78). Radiomics features were obtained from both the intratumoral region (IR) and the intratumoral plus 3-mm peritumoral region (IPR) on preoperative contrast-enhanced CT images. After standardizing and reducing the dimensionality of these features, six radiomic models were constructed utilizing three machine learning techniques: Support Vector Machine (SVM), Linear Support Vector Classification (LinearSVC), and Logistic Regression (LR). The optimal model was determined by evaluating the Receiver Operating Characteristic (ROC) curve's Area Under the Curve (AUC), and the radiomics score (Radscore) was computed. A clinical model was developed using clinical characteristics and CT semantic features, with the Radscore integrated to create a combined model. Used ROC curves, calibration plots, and Decision Curve Analysis (DCA) to assess the performance of radiomics, clinical, and combined models.

RESULTS

The LinearSVC model using the IPR achieved the highest AUC of 0.802 in the external validation set. The combined model yielded superior AUCs in internal and external validation sets (0.891 and 0.856) in comparison to clinical model [(0.724, P = 0.193) and (0.655, P = 0.072)] and radiomics model [(0.826, P = 0.160) and (0.802, P = 0.068)]. Furthermore, results from calibration and DCA underscored the model's suitability and clinical relevance.

CONCLUSION

The combined model, which integrates IPR radiomics with clinical characteristics, accurately predicts MSI status and supports the development of personalized treatment strategies.

摘要

目的

本研究旨在探讨基于CT的肿瘤周围和肿瘤内放射组学在预测胃癌(GC)患者术前微卫星不稳定性(MSI)状态方面的有效性。

方法

对2019年2月至2023年12月期间来自三家医疗机构的GC患者进行回顾性分析。364例患者(包括41例微卫星高度不稳定(MSI-H)和323例微卫星低度/稳定(MSI-L/S))被分为训练集(n = 202)、内部验证集(n = 84)和外部验证集(n = 78)。在术前增强CT图像上,从肿瘤内区域(IR)以及肿瘤内加3mm肿瘤周围区域(IPR)获取放射组学特征。在对这些特征进行标准化和降维后,利用三种机器学习技术构建了六个放射组学模型:支持向量机(SVM)、线性支持向量分类(LinearSVC)和逻辑回归(LR)。通过评估受试者工作特征(ROC)曲线的曲线下面积(AUC)来确定最佳模型,并计算放射组学评分(Radscore)。利用临床特征和CT语义特征建立临床模型,并将Radscore纳入以创建联合模型。使用ROC曲线、校准图和决策曲线分析(DCA)来评估放射组学模型、临床模型和联合模型的性能。

结果

在外部验证集中,使用IPR的LinearSVC模型达到了最高的AUC,为0.802。与临床模型[(0.724,P = 0.193)和(0.655,P = 0.072)]以及放射组学模型[(0.826,P = 0.160)和(0.802,P = 0.068)]相比,联合模型在内部和外部验证集中产生了更高的AUC(分别为0.891和0.856)。此外,校准和DCA的结果强调了该模型的适用性和临床相关性。

结论

将IPR放射组学与临床特征相结合的联合模型能够准确预测MSI状态,为个性化治疗策略的制定提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51fd/11724602/1fd4ade3f449/12885_2025_13450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验