Suppr超能文献

基于CT特征的非侵入性列线图模型预测胃癌中的DNA错配修复缺陷

A noninvasive nomogram model based on CT features to predict DNA mismatch repair deficiency in gastric cancer.

作者信息

Chen Jie-Yu, Tong Ya-Han, Chen Hai-Yan, Yang Yong-Bo, Deng Xue-Ying, Shao Guo-Liang

机构信息

Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

Department of Interventional Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

出版信息

Front Oncol. 2023 Mar 9;13:1066352. doi: 10.3389/fonc.2023.1066352. eCollection 2023.

Abstract

OBJECTIVES

DNA mismatch repair deficiency (dMMR) status has served as a positive predictive biomarker for immunotherapy and long-term prognosis in gastric cancer (GC). The aim of the present study was to develop a computed tomography (CT)-based nomogram for preoperatively predicting mismatch repair (MMR) status in GC.

METHODS

Data from a total of 159 GC patients between January 2020 and July 2021 with dMMR GC (n=53) and MMR-proficient (pMMR) GC (n=106) confirmed by postoperative immunohistochemistry (IHC) staining were retrospectively analyzed. All patients underwent abdominal contrast-enhanced CT. Significant clinical and CT imaging features associated with dMMR GC were extracted through univariate and multivariate analyses. Receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA) and internal validation of the cohort data were performed.

RESULTS

The nomogram contained four potential predictors of dMMR GC, including gender (odds ratio [OR] 9.83, 95% confidence interval [CI] 3.78-28.20, P < 0.001), age (OR 3.32, 95% CI 1.36-8.50, P = 0.010), tumor size (OR 5.66, 95% CI 2.12-16.27, P < 0.001) and normalized tumor enhancement ratio (NTER) (OR 0.15, 95% CI 0.06-0.38, P < 0.001). Using an optimal cutoff value of 6.6 points, the nomogram provided an area under the curve (AUC) of 0.895 and an accuracy of 82.39% in predicting dMMR GC. The calibration curve demonstrated a strong consistency between the predicted risk and observed dMMR GC. The DCA justified the relatively good performance of the nomogram model.

CONCLUSION

The CT-based nomogram holds promise as a noninvasive, concise and accurate tool to predict MMR status in GC patients, which can assist in clinical decision-making.

摘要

目的

DNA错配修复缺陷(dMMR)状态已成为胃癌(GC)免疫治疗和长期预后的阳性预测生物标志物。本研究的目的是开发一种基于计算机断层扫描(CT)的列线图,用于术前预测GC中的错配修复(MMR)状态。

方法

回顾性分析2020年1月至2021年7月期间159例GC患者的数据,这些患者术后免疫组织化学(IHC)染色确诊为dMMR GC(n = 53)和错配修复功能正常(pMMR)GC(n = 106)。所有患者均接受腹部增强CT检查。通过单因素和多因素分析提取与dMMR GC相关的显著临床和CT影像特征。进行受试者操作特征(ROC)曲线分析、决策曲线分析(DCA)和队列数据的内部验证。

结果

该列线图包含dMMR GC的四个潜在预测因素,包括性别(比值比[OR] 9.83,95%置信区间[CI] 3.78 - 28.20,P < 0.001)、年龄(OR 3.32,95% CI 1.36 - 8.50,P = 0.010)、肿瘤大小(OR 5.66,95% CI 2.12 - 16.27,P < 0.001)和标准化肿瘤增强率(NTER)(OR 0.15,95% CI 0.06 - 0.38,P < 0.001)。使用6.6分的最佳截断值,该列线图在预测dMMR GC时曲线下面积(AUC)为0.895,准确率为82.39%。校准曲线显示预测风险与观察到的dMMR GC之间具有很强的一致性。DCA证明了列线图模型的相对良好性能。

结论

基于CT的列线图有望成为预测GC患者MMR状态的无创、简洁且准确的工具,可协助临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6873/10034198/fbea79976ec8/fonc-13-1066352-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验