Dib Nihel, Sauvage Frédéric, Quéhon Lucie, Khaldi Khadidja, Bedrane Sumeya, Calvino José Juan, Bachir Redouane, Blanco Ginesa, Pourceau Gwladys
Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO), University of Tlemcen, BP 119, Tlemcen 13000, Algeria.
Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real, Cádiz, Spain.
Molecules. 2024 Dec 24;30(1):13. doi: 10.3390/molecules30010013.
Confronting escalating challenges in energy security and environmental sustainability has intensified interest in renewable sources for fuels and chemicals. Among the most promising alternatives, sugars derived from biomass are emerging as a cornerstone in advancing an environmentally sustainable economy. Within this framework, the development of sunlight-driven carbohydrate oxidation is of significant interest, as it enables the production of a broad spectrum of high-value, bio-sourced chemicals through eco-friendly processes. Gold nanoparticles (Au NPs) immobilized on inorganic supports have demonstrated considerable potential in this area, although the methodology still requires further exploration. In this study, we explored the selective oxidation of glucose into the corresponding gluconic acid salt in presence of a novel Au/Ni-Al-Zr-layered double hydroxide (LDH) photocatalyst under standardized A.M. 1.5 G light illumination. To optimize the photocatalytic conditions, an experimental plan is herein proposed, highlighting the critical influences of both catalyst loading and pH. In optimal conditions, the Au catalyst demonstrated a high efficiency, achieving 87% glucose conversion and 100% selectivity towards gluconic acid in only 90 min. By means of long-pass filters to select the incident light energy to the photocatalytic reactor, we evidenced that the charge transfer processes were occurring from the Ni-Al-Zr LDH support to the gold nanoparticles, thus opening new directions towards further photocatalyst modifications. This work underlines the potential of Au/LDH materials for sunlight-driven photocatalysis and provides a pathway for the sustainable production of high-value chemicals from renewable biomass sources.
面对能源安全和环境可持续性方面不断升级的挑战,人们对可再生燃料和化学品来源的兴趣日益浓厚。在最有前景的替代方案中,源自生物质的糖类正成为推动环境可持续经济发展的基石。在此框架内,阳光驱动的碳水化合物氧化反应的发展备受关注,因为它能够通过环保工艺生产多种高价值的生物源化学品。固定在无机载体上的金纳米颗粒(Au NPs)在这一领域已展现出相当大的潜力,尽管该方法仍需进一步探索。在本研究中,我们探索了在新型Au/Ni-Al-Zr层状双氢氧化物(LDH)光催化剂存在下,在标准AM 1.5 G光照条件下将葡萄糖选择性氧化为相应的葡萄糖酸盐。为了优化光催化条件,本文提出了一个实验方案,突出了催化剂负载量和pH值的关键影响。在最佳条件下,Au催化剂表现出高效率,仅在90分钟内就实现了87%的葡萄糖转化率和对葡萄糖酸100%的选择性。通过使用长波滤光片来选择进入光催化反应器的入射光能,我们证明了电荷转移过程是从Ni-Al-Zr LDH载体发生到金纳米颗粒上,从而为进一步的光催化剂改性开辟了新方向。这项工作强调了Au/LDH材料在阳光驱动光催化方面的潜力,并为从可再生生物质资源可持续生产高价值化学品提供了一条途径。