Ma Tingyu, Wang Jieni, Han Xiaobo, Zhang Chuanbing, Xu Yahui, Cao Leichang, Zhao Shuguang, Zhang Jinglai, Zhang Shicheng
Henan Key Laboratory of Protection and Safety Energy Storage for Light Metal Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
School of Physical Education and Sport, Henan University, Kaifeng 475004, China.
Molecules. 2024 Dec 25;30(1):26. doi: 10.3390/molecules30010026.
Discarded sports waste faces bottlenecks in application due to inadequate disposal measures, and there is often a neglect of enhancing resource utilization efficiency and minimizing environmental impact. In this study, nanoporous biochar was prepared through co-hydrothermal carbonization (co-HTC) and pyrolytic activation by using mixed goose feathers and heavy-metals-contaminated pine sawdust. Comprehensive characterization demonstrated that the prepared M-3-25 (Biochar derived from mixed feedstocks (25 mg/g Cu in pine sawdust) at 700 °C with activator ratios of 3) possesses a high specific surface area 2501.08 m g and abundant heteroatomic (N, O, and Cu), exhibiting an outstanding physicochemical structure and ultrahigh electrochemical performance. Compared to nanocarbon from a single feedstock, M-3-25 showed an ultrahigh capacitance of 587.14 F g at 1 A g, high energy density of 42.16 Wh kg, and only 8.61% capacitance loss after enduring 10,000 cycles at a current density of 10 A g, positioning M-3-25 at the forefront of previously known biomass-derived nanoporous carbon supercapacitors. This research not only introduces a promising countermeasure for the disposal of sports waste but also provides superior biochar electrode materials with robust supercapacitor characteristics.
由于处理措施不完善,废弃体育垃圾在应用上面临瓶颈,而且往往忽视了提高资源利用效率和将环境影响降至最低。在本研究中,通过使用混合鹅毛和重金属污染的松木屑进行共水热碳化(co-HTC)和热解活化制备了纳米多孔生物炭。综合表征表明,制备的M-3-25(在700°C下由混合原料(松木屑中含25 mg/g铜)制备、活化剂比例为3的生物炭)具有2501.08 m²/g的高比表面积和丰富的杂原子(N、O和Cu),展现出优异的物理化学结构和超高的电化学性能。与单一原料的纳米碳相比,M-3-25在1 A/g时表现出587.14 F/g的超高电容、42.16 Wh/kg的高能量密度,并且在10 A/g的电流密度下经受10000次循环后电容损失仅为8.61%,使M-3-25处于先前已知的生物质衍生纳米多孔碳超级电容器的前沿。本研究不仅为体育垃圾的处理引入了一种有前景的对策,还提供了具有强大超级电容器特性的优质生物炭电极材料。